Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (3): 221-226    DOI: 10.11902/1005.4537.2016.018
Orginal Article Current Issue | Archive | Adv Search |
Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2
Shuaihao HAN1,Hongyu CEN1,Zhenyu CHEN1,2(),Yubing QIU2,Xingpeng GUO1,2
1 Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
Download:  HTML  PDF(2583KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of crude oil on the inhibition behavior of imidazoline inhibitor were illustrated by dynamic mass loss method, electrochemical test, contact angle measurement, scanning electron microscopy etc. The oilfield produced water was simulated in the presence of CO2 under pressure of 2.5 MPa at 80 ℃, then in the above corrosive medium the corrosion inhibition performance of imidazoline corrosion inhibitor for N80 steel was assessed. The results showed that the open circuit potential and charge transfer resistance of the carbon steel increased when adding crude oil into the corrosive medium which contained imidazoline corrosion inhibitor. It is also found that the wettability of carbon steel surface against water was reduced obviously and the coverage of the inhibitor film became more complete, whilst the inhibition efficiency increased greatly after introducing crude oil into the oilfield produced water.

Key words:  CO2 corrosion      imidazoline corrosion inhibitor      N80 steel      crude oil     
Received:  25 January 2016     
Fund: Supported by National Natural Science Foundation of China (51571098)

Cite this article: 

Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 221-226.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.018     OR     https://www.jcscp.org/EN/Y2017/V37/I3/221

Condition CO2 pressureMPa Corrosion ratemma-1
Imidazoline only 0.5 0.151
1.5 0.237
2.5 0.299
Imidazoline+crude oil 0.5 0.041
1.5 0.052
2.5 0.072
Table 1  Weight loss experiment results of N80 steel at different CO2 partial pressures (80 ℃)
Condition Temperature℃ Corrosion rate mma-1
Imidazoline only 40 0.172
60 0.251
80 0.299
Imidazoline+crude oil 40 0.055
60 0.062
80 0.072
Table 2  Mass loss experiment results of N80 steel at different temperatures (2.5 MPa)
Fig.1  Polarization curves of N80 steel under different conditions (80 ℃, 2.5 MPa)
Condition Ecorr
mV
Icorr
mAcm-2
ba
mVdec-1
bc
mVdec-1
η
%
Blank -701 3.74 175.69 343.66 ---
Crude oil -689 3.08 162.46 268.58 17.6
Imidazoline -667 0.23 89.64 213.04 93.8
Imidazoline+crude oil -644 0.05 60.98 237.96 98.7
Table 3  Electrochemical parameters obtained from polarization curves in Fig.1 (80 ℃, 2.5 MPa)
Fig.2  EIS of N80 steel under different conditions (80 ℃, 2.5 MPa)
Fig.3  Equivalent circuit models for fitting the impedance spectroscopies of N80 steel in different simulated solutions with additions of null or crude oil (a), imidazoline inhibitor or imidazoline inhibitor+crude oil (b)
Condition RsΩcm2 CPEct-T
mFcm-2
CPEct-P Rct
Ωcm2
RL
Ωcm2
L
Hcm2
CPEf-T
mFcm-2
CPEf-P Rf
Ωcm2
Blank 2.876 1.5984 0.89 11.42 33.09 156.2 --- --- ---
Crude oil 3.275 1.6041 0.87 14.79 45.97 179.2 --- --- ---
Imidazoline 3.35 0.270 0.85 289.1 --- --- 7.97 0.73 116.5
Imidazoline+crude oil 4.48 0.213 0.80 421.7 --- --- 7.87 0.77 223.6
Table 4  Fitting parameters of EIS of N80 steel
Fig.4  Morphologies of water droplets on N80 steel immersed in different solutions with additions of null (a), crude oil (b), imidazoline inhibitor (c) and imidazoline inhibitor and crude oil (d)
Fig.5  Corrosion morphologies of N80 steel in different simulated solutions with additions of null (a), crude oil (b), imidazoline inhibitor (c) and imidazoline inhibitor and crude oil (d)
[1] Zhang H H, Pang X L, Zhou M, et al.The behavior of pre-corrosion effect on the performance of imidazoline-based inhibitor in 3wt.%NaCl solution saturated with CO2[J]. Appl. Surf. Sci., 2015, 356: 63
[2] Chen Y, Sun D B, Lu Y H, et al.Research of CO2 corrosion behavior of 20# steel in gas well solution containing formic acid[J]. Procedia Eng., 2012, 27: 1544
[3] Liu Y C, Zhang B, Zhang Y L, et al.Electrochemical polarization study on crude oil pipeline corrosion by the produced water with high salinity[J]. Eng. Fail. Anal., 2016, 60: 307
[4] Wu Q L, Zhang Z H, Dong X M, et al.Corrosion behavior of low-alloy steel containing 1% chromium in CO2 environments[J]. Corros. Sci., 2013, 75: 400
[5] Lin Y H, Zhu D J, Zeng D Z, et al.Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions[J]. Corros. Sci., 2013, 74: 13
[6] Pfennig A, Wiegand R, Wolf M, et al.Corrosion and corrosion fatigue of AISI 420C (X46Cr13) at 60 ℃ in CO2-saturated artificial geothermal brine[J]. Corros. Sci., 2013, 68: 134
[7] Zhang X Y, Di C, Lei L C, et al.Corrosion and Control of CO2 [M]. Beijing: Chemical Industry Press, 2000: 15
[7] (张学元, 邸超, 雷良才等. 二氧化碳腐蚀与控制 [M]. 北京: 化学工业出版社, 2000: 15)
[8] Smart J S.A review of erosion corrosion in oil and gas production [A]. Corrosion/1990[C]. Houston, TX: NACE, 1990
[9] Nam N D, Bui Q V, Mathesh M, et al.A study of 4-carboxyphenylboronic acid as a corrosion inhibitor for steel in carbon dioxide containing environments[J]. Corros. Sci., 2013, 76: 257
[10] Zhao J M, Chen G H.The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution[J]. Electrochim. Acta, 2012, 69: 247
[11] Rodríguez-Valdez L M, Villamisar W, Casales M, et al. Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl[J]. Corros. Sci., 2006, 48: 4053
[12] Zhang X Y, Wang F P, He Y F, et al.Study of the inhibition mechanism of imidazoline amide on CO2 corrosion of Armco iron[J]. Corros. Sci., 2001, 43: 1417
[13] Okafor P C, Liu X, Zheng Y G.Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution[J]. Corros. Sci., 2009, 51: 761
[14] Heuer J K, Stubbins J F.Microstructure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow[J]. Corrosion, 1998, 54: 566
[15] Craig B D.Corrosion in oil/water systems[J]. Mater. Perform., 1996, 35: 61
[16] Rincon H, Hernandez S, Salazar J, et al.Effect of the water/oil ratio on the SCCC susceptibility of high strength OCTG carbon steel [A]. Corrosion/99[C]. San Antonio, Texas: NACE, 1999: 602
[17] Efird K D, Smith J L, Blevins S.The crude oil effect on steel corrosion: wetability preference and brine chemistry [A]. Corrosion/ 2004[C]. New Orleans, Louisiana: NACE, 2004: 04366
[18] Ayello F, Robbins W, Richter S, et al.Crude oil chemistry effects on inhibition of corrosion and phase wetting [A]. Corrosion/2011[C]. Houston: NACE, 2011: 11060
[19] Castillo M, Vera J R, Rincon H, et al.Protective properties of crude oils in CO2 and H2S corrosion [A]. Corrosion/2000[C]. Orlando, Florida: NACE, 2000: 00005
[20] Wu D W, Tang S F, Zhang D C, et al.Optimization of synthesis conditions of oleic acid imidazoline corrosion inhibitor[J]. Adv. Fine Petrochem., 2009, 10(1): 48
[20] (吴大伟, 唐善法, 张大椿等. 油酸咪唑啉缓蚀剂合成条件的优选设计[J]. 精细石油化工进展, 2009, 10(1): 48)
[21] Li X L.A study on low fluctuation pump by using hydraulic filter [D]. Xi'an: Xi'an Shiyou University, 2013
[21] (李小龙. 原油流动性改进研究 [D]. 西安: 西安石油大学, 2013)
[22] Zhang G A, Zeng Y, Guo X P, et al.Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment[J]. Corros. Sci., 2012, 65: 37
[1] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[2] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[3] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[4] Hongwei LIU,Fuping XIONG,Yalin LV,Chengxuan GE,Hongfang LIU,Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
[5] ZHANG Yanfei, CHEN Xu, HE Chuan, CHEN Yu, WANG Guangfu, ZHANG Yugang. Gray Relationship Analysis Methods for Effect of Crude Oil Properties on Corrosion Behavior of 16Mn Steel[J]. 中国腐蚀与防护学报, 2015, 35(1): 43-48.
[6] HUANG Bensheng,YIN Wenfeng,WANG Xiaohong,SHI Yijun. Corrosion Behavior of Steels Used in Making Crude Oil Distillation Unit in High Temperature Crude Oil Fractions[J]. 中国腐蚀与防护学报, 2013, 33(5): 377-382.
[7] ZHAO Jingmao,CHEN Guohao. Synergistic Inhibition Mechanism of Imidazoline and Thiourea in CO2 Corrosive System[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
[8] LIU Yu,LI Yan. Research Progress of CO2 Corrosion of Internal Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[9] ZHAO Jingmao, LI Jun. GEMINI SURFACTANTS CONTAINING HYDROXYL GROUP AS CORROSION INHIBITORS FOR Q235 STEEL IN BRINE SOLUTION SATURATED BY CO2[J]. 中国腐蚀与防护学报, 2012, 32(4): 349-352.
[10] HOU Zan, ZHOU Qingjun, WANG Qijiang, ZHANG Zhonghua, QI Huibin, WANG Jun. INVESTIGATION ON CARBON DIOXIDE CORROSION PERFORMANCE OF VARIOUS 13Cr STEELS IN SIMULATED STRATUM WATER[J]. 中国腐蚀与防护学报, 2012, 32(4): 300-305.
[11] LU Zhaoling, GUO Xingpeng. INHIBITION PERFORMANCE AND MECHANISM OF LAURIC ACID IN CO2 SATURATED NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2010, 30(6): 475-480.
[12] WANG Bin; ZHANG Jing; DU Min. INHIBITION PERFORMANCE OF IMIDAZOLINE INHIBITORS FOR Q235-A STEEL IN THE SIMULATED PRODUCING WELL WATER SATURATED WITH CO2[J]. 中国腐蚀与防护学报, 2010, 30(1): 16-20.
[13] YU Fang GAO Kewei LU Minxu. INVESTIGATION OF STRUCTURE AND MECHANICAL PROPERTIES OF CO2 CORROSION SCALE FORMED UNDER VARIOUS FLOW RATES[J]. 中国腐蚀与防护学报, 2009, 29(6): 401-404.
[14] ZHU Shidong YIN Zhifu BAI Zhenquan WEI Jianfeng ZHOU Genshu TIAN Wei. INFLUENCES OF TEMPERATURE ON CORROSION BEHAVIOR OF P110 STEEL[J]. 中国腐蚀与防护学报, 2009, 29(6): 493-498.
[15] LIU Dong QIU Yubing GUO Xingpeng. CORROSION ELECTROCHEMICAL BEHAVIOR OF N80 STEEL IN CO2/HAc ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2009, 29(1): 44-49.
No Suggested Reading articles found!