Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (3): 227-232    DOI: 10.11902/1005.4537.2016.016
Orginal Article Current Issue | Archive | Adv Search |
Effect of KH-550 Content on Structure and Properties of a Micro-arc Oxidation Coating on Mg-alloy AZ31B
Xuejun CUI1,2(),Xin DAI1,Bingyu ZHENG1,Yingjun ZHANG1,2
1 School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
2 Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
Download:  HTML  PDF(4313KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Influence of the content of coupling reagent KH-550 on the morphology, phase constituent and corrosion resistance in 3.5%NaCl solution of micro-arc oxidation (MAO) coatings, prepared on Mg-alloy AZ31B by a constant voltage mode in an electrolyte of Na2SiO3-KOH-NaF, was investigated by scanning electron microscopy, X-ray diffractometer and electrochemical methods. Results showed that the size of micro pores and the roughness of the MAO coatings are increased firstly and then decreased with the increasing amount of KH-550 in a concentration range of 0~20 mL/L, but its thickness and corrosion resistance show a converse result. However, the phase constituents of the MAO coatings are not changed. The preliminary analysis suggested that KH-550 hinders the ionic migration on certain weak areas, where silanol was adsorbed and/or reacted with, and thereby the arc discharge was modulated during MAO process. Therefore, KH-550 improves the growing efficiency of MAO coating, homogenizes the size and distribution of micro pores, and enhances the corrosion protection ability of the MAO coating on Mg-alloy.

Key words:  magnesium alloy      coating      plasma electrolytic oxidation      silane coupling agent      restraining sparking     
Received:  09 January 2016     
Fund: Supported by Science and Technology Planning Project of Sichuan Province (2016JZ0032), Students Innovation Training Planning of Sichuan Province (201610622100) and Talent Introduction Fund of Sichuan University of Science and Engineering (2017RCL15)

Cite this article: 

Xuejun CUI,Xin DAI,Bingyu ZHENG,Yingjun ZHANG. Effect of KH-550 Content on Structure and Properties of a Micro-arc Oxidation Coating on Mg-alloy AZ31B. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 227-232.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.016     OR     https://www.jcscp.org/EN/Y2017/V37/I3/227

Number Content of KH-550mLL-1 pHvalue Conductivityms
a 0 13.77 23.94
b 1 13.50 23.31
c 4 13.61 23.24
d 7 13.38 23.19
e 10 13.38 22.81
f 20 13.16 23.08
Table 1  Effects of additive amount of KH-550 on pH value and conductivity of electrolyte solution
Fig.1  Surface morphologies of AZ31B alloy after MAO treatments in electrolyte solutions with various concentrations of KH-550: (a, b) 0%; (c, d) 1%; (e, f) 4%; (g, h) 7%; (i, j) 10%; (k, l) 20%
Fig.2  Effects of the content of KH-550 on the thickness ofMAO coating
Fig.3  Effects of the content of KH-550 on the roughness of MAO coating
Fig.4  XRD patterns of AZ31B alloy after MAO treatments in electrolyte solutions with and without 7 mL/L KH-550
Fig.5  Polarization curves of MAO treated AZ31B alloy in 3.5%NaCl solution
Concentration of KH-550 / % -EcorrmV Icorr μAcm-2 -bc mVdec-1
0 1522 0.415 231
1 1446 0.159 263
4 1416 0.110 261
7 1380 0.120 197
10 1306 0.178 253
20 1324 0.570 287
Table 2  Fitting results of the polarization curves
[1] Yerokhin A L, Nie X, Leyland A, et al.Plasma electrolysis for surface engineering[J]. Surf. Coat. Technol., 1999, 122: 73
[2] Song G L.Recent progress in corrosion and protection of magnesium alloys[J]. Adv. Eng. Mater., 2005, 7: 563
[3] Vladimirov B V, Krit B L, Lyudin V B, et al.Microarc oxidation of magnesium alloys: A review[J]. Surf. Eng. Appl. Electrochem., 2014, 50: 195
[4] Zhang L, Zhang J Q, Chen C F, et al.Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications[J]. Corros. Sci., 2015, 91: 7
[5] Zozulin A J, Bartak D E.Anodized coating for magnesium alloys[J]. Met. Finish., 1994, 92: 39
[6] Kozak O.Anti-corrosive coating on magnesium and its alloys [P]. US Pat, 4184926A, 1980
[7] Khaselev O, Yahalom J.The anodic behavior of binary Mg-Al alloys in KOH-aluminate solutions[J]. Corros. Sci., 1998, 40: 1149
[8] Duan H P, Yan C W, Wang F H.Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution[J]. Electrochim. Acta, 2007, 52: 5002
[9] Al Bosta M M S, Ma K J. Suggested mechanism for the MAO ceramic coating on aluminium substrates using bipolar current mode in the alkaline silicate electrolytes[J]. Appl. Surf. Sci., 2014, 308: 121
[10] Zhang T.The research on anodizing of magnesium alloys under restraining sparking [D]. Changsha: Hunan University, 2004: 13
[10] (张涛. 镁及其合金表面抑弧阳极氧化研究 [D]. 长沙: 湖南大学, 2004: 13)
[11] Kuang Y F, Luo S L, Zhou H H, et al.Anode oxidating electrolysing liquid under inhibiting arc state of magnesium alloy and process for anode oxidating[P]. China Pat, CN1793438A, 2015
[11] (旷亚非, 罗胜联, 周海晖等. 镁合金在抑弧状态下的阳极氧化电解液及阳极氧化方法 [P]. 中国专利, CN1793438A, 2015)
[12] Wu D, Liu X D, Lv K, et al.Influence of glycerol on micro-arc oxidation process and properties of the ceramic coatings on AZ91D magnesium alloy[J]. Mater. Prot., 2009, 42(2): 1
[12] (乌迪, 刘向东, 吕凯等. 丙三醇对镁合金微弧氧化过程及膜层的影响[J]. 材料保护, 2009, 42(2): 1)
[13] Luo S L, Zhang T, Zhou H H, et al.Effect of organic amine on anodizing of magnesium alloys[J]. Chin. J. Nonferrous Met., 2004, 14: 691
[13] (罗胜联, 张涛, 周海晖等. 有机胺对镁合金阳极氧化的影响 [J]. 中国有色金属学报, 2004, 14: 691)
[14] Liu Y, Wei Z L, Yang F W, et al.Anodizing of AZ91D magnesium alloy in borate-terephthalic acid electrolyte[J]. Acta Phys.-Chim. Sin., 2011, 27: 2385
[15] Zhang M Z, Guan C S, Wang W Q.Application of silane coupling agents in pretreatment of metal surface[J]. Corro. Sci. Prot. Technol., 2001, 13: 96
[15] (张明宗, 管从胜, 王威强. 有机硅烷偶联剂在金属表面预处理中的应用[J]. 腐蚀科学与防护技术, 2001, 13: 96)
[16] Liu L, Hu J M, Zhang J Q, et al.Progress in anti-corrosive treatment of metals by silanization[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 59
[16] (刘倞, 胡吉明, 张鉴清等. 金属表面硅烷化防护处理及其研究现状[J]. 中国腐蚀与防护学报, 2006, 26: 59)
[17] Cui X J, Wang R, Wei J S, et al.Effect of electrical parameters on micromorphology and corrosion resistance of micro-arc oxidation coating on az31b mg alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 495
[17] (崔学军, 王荣, 魏劲松等. 电参数对AZ31B镁合金微弧氧化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34: 495)
[18] Cui X J, Lin X Z, Liu C H, et al.Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy[J]. Corros. Sci., 2015, 90: 402
[19] Cui X J, Li M T, Yang R S, et al.Silane coupling agent arc-suppressed micro arc oxidation electrolyte solution and micro arc oxidation film preparation method [P]. China Pat, CN105063722A, 2015
[19] (崔学军, 李明田, 杨瑞嵩等. 一种硅烷偶联剂抑弧的微弧氧化电解质溶液及微弧氧化膜制备方法 [P]. 中国专利, CN105063722A, 2015)
[20] Mi T, Jiang B, Liu Z, et al.Plasma formation mechanism of microarc oxidation[J]. Electrochim. Acta, 2014, 123: 369
[21] Yagi S, Sengoku A, Kubota K, et al.Surface modification of ACM522 magnesium alloy by plasma electrolytic oxidation in phosphate electrolyte[J]. Corros. Sci., 2012, 57: 74
[22] Lu X P, Blawert C, Kainer K U, et al.Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles[J]. Electrochim. Acta, 2016, 196: 680
[23] Veys-Renaux D, Rocca E, Martin J, et al.Initial stages of AZ91 Mg alloy micro-arc anodizing: Growth mechanisms and effect on the corrosion resistance[J]. Electrochim. Acta, 2014, 124: 36
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[3] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[5] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[6] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[8] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[10] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[11] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[12] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[13] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[14] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[15] WANG Guirong,ZHENG Hongpeng,CAI Huayang,SHAO Yawei,WANG Yanqiu,MENG Guozhe,LIU Bin. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
No Suggested Reading articles found!