Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 148-154    DOI: 10.11902/1005.4537.2016.001
Orginal Article Current Issue | Archive | Adv Search |
Effect of Magnetic Field on Corrosion of X80 Pipeline Steel in Meadow Soil at Shenyang Area
Kangnan ZHANG,Ming WU(),Fei XIE,Dan WANG,Yuxi SAN,Feng JIANG
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(5729KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of magnetic field on the corrosion of X80 pipeline steel in meadow soil at Shenyang area was investigated by means of mass loss method, X-ray diffractometer (XRD), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS). The results indicated that the magnetic field accelerated the corrosion rate of X80 pipeline steel in the soil. In contrast to the circumstance without magnetic field, porous FeO(OH) emerged on the X80 steel electrode surface under magnetic field which weakened the protectiveness of the formed scales. With the increase of the magnetic field strength, Fe3O4 content decreased and FeO(OH) content increased in the corrosion products, which led to the increase of the corrosion rate of X80 steel. However, the increment of the corrosion rate slowed down during the process. As the magnetic field intensity increases to a certain extent, the formation of an integrated corrosion product may be suppressed. As the magnetic field intensity reached to 20 mT, the integrity of the formed scale became poor with cracks, thereby the corrosion rate of X80 steel increased to 73.799 μm/a. These phenomena may be ascribed to that the magnetic field facilitates the preferred oriented growth of oxide grains.

Key words:  magnetic field      X80 pipeline steel      meadow soil      corrosion     
Received:  03 January 2016     
Fund: Supported by National Natural Science Foundation of China (51574147) and Liaoning Science Research Foundation (L2014156)

Cite this article: 

Kangnan ZHANG,Ming WU,Fei XIE,Dan WANG,Yuxi SAN,Feng JIANG. Effect of Magnetic Field on Corrosion of X80 Pipeline Steel in Meadow Soil at Shenyang Area. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 148-154.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.001     OR     https://www.jcscp.org/EN/Y2017/V37/I2/148

Fig.1  Self-made sealed PVC container
Fig.2  Microstructure morphology of X80 pipeline steel
Fig.3  Annual average corrosion rate and average penetration depth of X80 pipeline steel buried for 182 d in Shenyang alpine meadow soil under various magnetic field strength
Fig.4  Optical photographs of X80 pipeline steel buried for 182 d in Shenyang alpine meadow soil under 0 mT (a), 5 mT (b), 10 mT (c), 15 mT (d) and 20 mT (e) magnetic fields
Fig.5  XRD pattern of the corrosion products collected from the surface of X80 pipeline steel buried for 182 d in Shenyang soil under 5 mT (a) and 20 mT (b) magnetic fields
Fig.6  SEM images of X80 pipeline steel buried for 182 d in Shenyang soil under 0 mT (a), 5 mT (b), 10 mT (c), 15 mT (d) and 20 mT (e) magnetic fields
Fig.7  EDS analysis results of corrosion products formed on X80 pipeline steel buried for 182 d in Shenyang soil under 0 mT (a), 5 mT (b), 10 mT (c), 15 mT (d) and 20 mT (e) magnetic fields
Fig.8  Surface morphologies of X80 steel samples after removal of the corrosion products formed during burying for 182 d in Shenyang soil under 0 mT (a), 5 mT (b), 10 mT (c), 15 mT (d) and 20 mT (e) magnetic fields
Magnetic field strength / mT Fe O Mn Cl C
0 55.86 34.48 0.87 8.79 0
5 52.05 35.83 5.48 6.64 0
10 49.41 39.19 2.43 2.70 6.27
15 49.01 45.04 0.86 5.09 0
20 48.77 49.55 0 0.69 0.99
Table 1  EDS results of the corrosion products of X80 steel (mass fraction / %)
[1] Liu Y Y, Jia H B, Zhang H M, et al.Study on soil corrosion behavior of super X80 pipeline steel[J]. Hot Work. Technol., 2015, 44(8): 57
[1] (刘英义, 贾宏斌, 张红梅等. 高级X80管线钢土壤腐蚀行为的研究[J]. 热加工工艺, 2015, 44(8): 57)
[2] Fan L, Du C W, Liu Z Y, et al.Stress corrosion cracking of X80 pipeline steel exposed to high pH solutions with different concentrations of bicarbonate[J]. Int. J. Min. Metall. Mater., 2013, 20: 645
[3] Dai J Y, Li C J, Xie P.Study on internal corrosion behavior of X80 pipeline steel used in the second west-east pipeline project[J]. Chem. Eng. Oil Gas, 2015, 44(2): 73
[3] (代佳赟, 李长俊, 谢萍. 西气东输二线X80管线钢内腐蚀行为的研究[J]. 石油与天然气化工, 2015, 44(2): 73)
[4] El-Shamy A M, Shehata M F, Ismail A I M. Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines[J]. Appl. Clay Sci., 2015, 114: 461
[5] de Freitas Cunha Lins V, Ferreira M L M, Saliba P A. Corrosion resistance of API X52 carbon steel in soil environment[J]. J. Mater. Res. Technol., 2012, 1: 161
[6] Wang X, Zhang R Y, Shen S F.Research on the corrosion behaviour of X80 steel in simulative soil solution[J]. Chem. Eng. Oil Gas, 2012, 41: 594
[6] (王霞, 张仁勇, 申少飞. X80钢在土壤模拟液中的腐蚀行为研究[J]. 石油与天然气化工, 2012, 41: 594)
[7] Yang S, Tang N, Yan M C, et al.Effect of temperature on corrosion behavior of X80 pipeline steel in acidic soil[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 227
[7] (杨霜, 唐囡, 闫茂成等. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35: 227)
[8] Qu L S, Du C W, Li X G, et al.Spatial variability of soil resistivity and rational sampling for corrosion assessment of carbon steel in Daqing area[J]. Acta Metall. Sin.(Eng. Lett.), 2010, 23: 396
[9] La Susa P.Lab testing reveals relationships among soil quality, corrosion and the pipeline environment[J]. Pipeline Gas J., 2010, 237: 92
[10] Li X G.Corrosion and Protection of Materials [M]. Changsha: Central South University Press, 2009: 156
[10] (李晓刚. 材料腐蚀与防护 [M]. 长沙: 中南大学出版社, 2009: 156)
[11] Kuang D, Cheng Y F.Effect of alternating current interference on coating disbondment and cathodic protection shielding on pipelines[J]. Corros. Eng. Sci. Technol., 2015, 50(3): 211
[12] Kuang D, Cheng Y F.AC corrosion at coating defect on pipelines[J]. Corrosion, 2015, 71: 267
[13] Xu L Y, Cheng Y F.Experimental and numerical studies of effectiveness of cathodic protection at corrosion defects on pipelines[J]. Corros. Sci., 2014, 78: 162
[14] Han D, Jiang R J, Cheng Y F.Mechanism of electrochemical corrosion of carbon steel under deoxygenated water drop and sand deposit[J]. Electrochim. Acta, 2013, 114: 403
[15] Zhang P, Chen G, Guo B, et al. Corrosion inhibition mechanism of magnetic field on carbon steel [J]. Adv. Mater. Res., 2010, 152/153: 353
[16] Wang C, Chen J M.Effect of magnetic field on metal corrosion and electrodeposiont[J]. Corros. Prot., 1991, (4): 165
[16] (王晨, 陈俊明. 磁场对金属腐蚀与电沉积的影响[J]. 腐蚀与防护, 1991, (4): 165)
[17] Ghabashy M A.Effect of magnetic field on the rate of steel corrosion in aqueous solutions[J]. Anti Corros. Methods Mater., 1954, 35: 12
[18] Ghabashy M E, Sedahmed G H, Mansour I A S. Effect of a magnetic field on the rate of diffusion-controlled corrosion of metals[J]. Br. Corros. J., 1982, 17: 36
[19] Busch K W, Busch M A, Parker D H, et al.Studies of a water treatment device that uses magnetic fields[J]. Corrosion, 1986, 42: 211
[20] Lv Z P, Yang W, Huang D L, et al.Open circuit state and cathodic diffusion process of copper in sulfuric acid solution containing ferric ion in the presence of magnetic field with different intensity[J]. J. Chin. Soc. Corros. Prot., 2001, 21: 129
[20] (吕战鹏, 杨武, 黄德伦等. 磁场对铜在含三价铁离子硫酸溶液中的腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2001, 21: 129)
[21] Chen J M, Lv Z P.Anodic polarization behavior of Fe/Na2SO4 system in the presence of magnetic field and additional ions[J]. J. Chin. Soc. Corros. Prot., 1998, 18: 119
[21] (陈俊明, 吕战鹏. 磁场和杂质离子存在下Fe/Na2SO4体系的阳极极化行为[J]. 中国腐蚀与防护学报, 1998, 18: 119)
[22] Lv Z P, Huang D L, Yang W.Magnetic field induced variation of open circuit state of iron in chloride solutions[J]. Corros. Prot., 2002, 23: 185
[22] (吕战鹏, 黄德伦, 杨武. 磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化[J]. 腐蚀与防护, 2002, 23: 185)
[23] Wang C, Chen J M.The effect of strong magnetic field on corrosion behavior of iron[J]. J. Chin. Soc. Corros. Prot., 1994, 14: 123
[23] (王晨, 陈俊明. 磁场对铁腐蚀过程中阴极析氢和阳极溶解的影响[J]. 中国腐蚀与防护学报, 1994, 14: 123)
[24] Srivastava K, Nigam N.Protection of mild steel in sulphuric acid by magnetic fields[J]. Br. Corros. J., 1988, 23: 172
[25] Noor E A, Al-Moubaraki A H. Influence of soil moisture content on the corrosion behavior of X60 steel in different soils[J]. Arabian J. Sci. Eng., 2014, 39: 5421
[26] Formaro L.Rate law of growth of γ-FeOOH layers from solutions[J]. Mater. Lett., 1988, 6: 290
[27] Liu Z Y, Zheng W R, Wang L W, et al.Corrosion characteristics of X70 pipeline steel under disbonded coatings in Kuerle soil environment[J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 1483
[27] (刘智勇, 郑文茹, 王力伟等. 库尔勒土壤环境中X70管线钢剥离涂层下的腐蚀特征[J]. 北京科技大学学报, 2014, 36: 1483)
[28] Wu J W, Li X G, Du C W, et al.Short-term corrosion behavior of X70 steel in Ku'erle soil[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 15
[28] (武俊伟, 李晓刚, 杜翠薇等. X70钢在库尔勒土壤中短期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2005, 25: 15)
[29] Zhang N, Sun H Y, Sun L J, et al.Electrochemical corrosion behavior of X80 pipeline steel in a simulated soil solution for coastal tidal flat wetland[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 339
[29] (张宁, 孙虎元, 孙立娟等. X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35: 339)
[30] Guo H, Du C W, Li X G, et al.Study on simulated-crevice corrosion mechanism of X70 steel in bicarbonate solution[J]. Corros. Sci. Prot. Technol., 2008, 20: 336
[30] (郭昊, 杜翠薇, 李晓刚等. 在NaHCO3溶液中X70钢的模拟缝隙腐蚀机理研究[J]. 腐蚀科学与防护技术, 2008, 20: 336)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!