Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 162-167    DOI: 10.11902/1005.4537.2015.231
Orginal Article Current Issue | Archive | Adv Search |
Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH
Yanliang WANG,Xu CHEN(),Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE
School of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(895KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical characteristics of the passivation film formed on 316L stainless steel in borate buffer solutions with pH of 4, 7 and 11, respectively were characterized by means of potentiodynamic polarization, electrochemical impedance spectroscopy and Mott-Schottky technology. The composition of passive film was analysized by X-ray photoelectron spectroscopy (XPS). The results showed that the stable passivation film could form on the steel surface in all the three borate buffer solutions. The passivation potential range decreased and the transpassive potential dropped significantly with the increasing pH value. The transpassive current of 316L stainless steel in alkaline borate buffer solution increased significantly. The integrity of the passive film was the best in the neutral solution, while it was the worst in the acid solution. The Mott-Schottky results showed that the semiconductor type of the passive film transferred from n-type to p-type with the increasing potential in acid solution. It was n-type and p-type semiconductor in the neutral and alkaline solution, respectively. It was attributed to that the chromium hydroxide dropped down and the formed iron compound was transformed from FeO(OH) to Fe3O4. The content of Cr2O3 was decreased in alkaline solution, which resulted in lower corrosion resistance.

Key words:  316L stainless steel      pH      passivation film      electrochemical behavior      XPS     
Received:  23 December 2015     
Fund: Supported by National Natural Science Foundation of China (51201009) and Natural Science Foundation of Liaoning Province (2013020078)

Cite this article: 

Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 162-167.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.231     OR     https://www.jcscp.org/EN/Y2017/V37/I2/162

Fig.1  Potentiodynamic polarization curves of 316L stainless steel in the solutions with different pH values
pH Ecorr V Passive potential range V IpμAcm-2
4 -0.527 -0.318~1.14 0.295
7 -0.220 0.096~0.959 0.323
11 -0.378 -0.03~0.703 0.426
Table 1  Fitting results of polarization curves
Fig.2  Nyquist (a) and Bode (b) polts of 316L stainless steel in the solutions with different pH values
Fig.3  Equivalent circuit of EIS
pH Rs / Ωcm2 Q1 / Fcm-2 n1 R1 / Ωcm2 Q2 / Fcm-2 n2 R2 / Ωcm2
4 0.34 1.07×10-4 0.887 1.73×10-5 4.25×10-10 1.00 1156
7 0.01 3.29×10-10 1.000 1446 7.50×10-5 0.82 2.29×105
11 189 7.60×10-5 0.999 16.47 5.48×10-5 0.89 1.38×105
Table 2  Fitting results of EIS
Fig.4  Mott-Schottky plots of passive films of 316L stainless steel in the solutions with pH=4 (a), pH=7 (b) and pH=11 (c)
Fig.5  Detailed XPS spectra of Fe (a, c, e) and Cr (b, d, f) of passive films formed on 316L stainless steel in the solutions with pH=4 (a, b), pH=7 (c, d) and pH=11 (e, f)
[1] Ford F, Andresen P.Corrosion in nuclear systems [A]. Corrosion Mechanisms in Theory and Practice [M]. 2nd ed. Boca Raton: CRC Press, 2002
[2] Sato Y, Atsumi T, Shoji T.Continuous monitoring of back wall stress corrosion cracking growth in sensitized type 304 stainless steel weldment by means of potential drop techniques[J]. Int. J. Pres.Ves. Pip., 2007, 84: 274
[3] Almubarak A, Belkharchouche M, Hussain A.Stress corrosion cracking of sensitized austenitic stainless steels in Kuwait petroleum refineries[J]. Anti-Corros. Methods Mater., 2010, 57: 58
[4] Lu B T, Luo J L, Lu Y C.Correlation between film rupture ductility and PbSCC of Alloy 800[J]. Electrochim. Acta, 2008, 53: 4122
[5] Lu B T, Luo J L, Peng B, et al.Condition for lead-induced corrosion of Alloy 690 in an alkaline steam generator crevice solution[J]. Corrosion, 2009, 65: 601
[6] Lu B T, Luo J L, Lu Y C.Effects of pH on lead-induced passivity degradation of nuclear steam generator tubing alloy in high temperature crevice chemistries[J]. Electrochim. Acta, 2013, 87: 824
[7] Maurice V, Yang W P, Marcus P.XPS and STM study of passive films formed on Fe-22Cr(110) single-crystal surfaces[J]. J. Electrochem. Soc., 1996, 143: 1182
[8] Hashimoto K.2002 W.R. Whitney award lecture: In pursuit of new corrosion-resistant alloys[J]. Corrosion, 2002, 58: 715
[9] Huang J B, Wu X Q, Han E-H.Influence of pH on electrochemical properties of passive films formed on Alloy 690 in high temperature aqueous environments[J]. Corros. Sci., 2009, 51: 2976
[10] Li C T, Cheng X Q, Dong C F, et al.Effect of pH value on electrochemical behavior of passivation film on alloy 690[J]. Mater. Protect., 2010, 43(12): 4
[10] (李成涛, 程学群, 董超芳等. pH值对690合金钝化膜电化学性能的影响[J]. 材料保护, 2010, 43(12): 4)
[11] Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study[J]. Electrochim. Acta, 2010, 55: 6174
[12] Paola A D.Semiconducting properties of passive films on stainless steels[J]. Electrochim. Acta, 1989, 34: 203
[13] Sikora J, Sikora E, Macdonald D D.The electronic structure of the passive film on tungsten[J]. Electrochim. Acta, 2000, 45: 1875
[14] Zhao J M, Gu F, Zhao X H, et al.Semiconductor properties of anodic oxide film formed on aluminum[J]. Acta Phys.-Chim. Sin.,2008, 24: 147
[14] (赵景茂, 谷丰, 赵旭辉等. 铝阳极氧化膜的半导体特性[J]. 物理化学学报, 2008, 24: 147)
[15] Zhuang P Q, Xiao Z W, Zhu X D, et al.Study on semiconductor properties of anodic oxide films on tantalum[J]. Electr. Compon.Mater., 2011, 30(8): 35
[15] (庄朋强, 肖占文, 朱向东等. 钽阳极氧化膜的半导体性研究[J]. 电子元件与材料, 2011, 30(8): 35)
[16] Cheng X Q, Li X G, Du C W.Electrochemical behavior of 316L stainless steel in Cl- containing acetic acid solution under high temperature[J]. Acta Metall. Sin., 2006, 42: 299
[16] (程学群, 李晓刚, 杜翠薇. 316L不锈钢在含高温Cl-醋酸溶液中的电化学行为[J]. 金属学报, 2006, 42: 299)
[17] Chen C F, Jiang R J, Zhang G A, et al.Analysis of the space charge capacitance of bipolar semiconductor passive films[J]. Acta Phys.-Chim. Sin., 2009, 25: 463
[17] (陈长风, 姜瑞景, 张国安等. 双极性半导体钝化膜空间电荷电容分析[J]. 物理化学学报, 2009, 25: 463)
[18] Ningshen S, KamachiMudali U, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J]. Corros. Sci., 2007, 49: 481
[19] Lin Y H, Du R G, Hu R G, et al.A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless steel[J]. Acta Phys.-Chim. Sin.,2005, 21: 740
[19] (林玉华, 杜荣归, 胡融刚等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究[J]. 物理化学学报, 2005, 21: 740)
[1] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[2] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[3] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[5] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[6] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[7] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[8] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[9] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[10] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[11] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[12] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[13] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[14] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[15] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
No Suggested Reading articles found!