Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (4): 313-320    DOI: 10.11902/1005.4537.2015.151
Current Issue | Archive | Adv Search |
Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel
Di ZHANG1,Ping LIANG1(),Yunxia ZHANG2,Yanhua SHI1,Hua QIN1
1. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2. Continual Education Institute, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(5215KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The evolution of corrosion product film formed on X80 pipeline steel in artificial solution,which simulate the soil medium at Ku'erle area, with different immersion time was studied by immersion tests, while the morphology and phase constituent of the corrosion product film was characterized by means of scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. The effect of corrosion product film on the pitting corrosion of X80 pipeline steel was investigated by cyclic polarization curves and electrochemical impedance spectroscopy (EIS). The experimental results showed that the thickness and compactness of corrosion product film gradually increased with increasing immersion time. After immersion for 168 h, the corrosion product film was clearly divided into two layers. The pitting of X80 pipeline steel may be hindered or inhibited by the corrosion product film, which may reduce the probability of pitting initiation, and increase the resistance to pitting growth.

Key words:  corrosion product film      pitting corrosion      cyclic polarization      X80 pipeline steel     

Cite this article: 

Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 313-320.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.151     OR     https://www.jcscp.org/EN/Y2016/V36/I4/313

Fig.1  Macro-morphologies of the corrosion product films of X80 pipeline steel after immersion in Ku'erle soil simulation solution for 6 h (a), 12 h (b), 24 h (c), 96 h (d) and 168 h (e)
Fig.2  Surface micromorphologies of the outer layers of corrosion product films formed on X80 pipeline steel after immersion in Ku'erle soil simulation solution for 6 h (a), 24 h (b), 96 h (c), the outer layer for 168 h (d), the inner layer for 168 h (e) and EDS result (f)
Fig.3  XRD spectra of the outer layer (a) and inner layer (b) of corrosion product film formed on X80 pipeline steel after immersion in Ku'erle soil simulation solution for 168 h
Fig.4  Cyclic polarization curves obtained in 0.5 mol/L NaHCO3+0.01 mol/L NaCl solution for X80 pipeline steel after immersion in Ku'erle soil simulation solution for 0~24 h (a) and 24~1008 h (b)
Immersion time / h Protective potential Ep / V Break potential Eb / V S
0 -0.24 0.25 93
6 -0.23 0.26 66
12 -0.20 0.27 43
24 -0.13 0.30 27
168 +0.21 1.00 18
504 +0.19 0.90 15
1008 --- 1.10 ---
Table 1  Fitting results of cyclic polarization curves
Fig.5  Nyquist plots obtained in 0.5 mol/L NaHCO3+0.01 mol/L NaCl solution for X80 pipeline steel immersed in Ku'erle soil simulation solution for 0~24 h (a) and 24~1008 h (b)
Fig.6  Equivalent circuit model used to fit the experimental EIS data for X80 pipeline steel without (a) and with (b) corrosion product film
Immersion time / h Rs
Ωcm2
Qfilm
10-3 Fcm-2s-n
n1 Rfilm
Ωcm2
Qdl
10-3 Fcm-2s-n
n2 Rct
Ωcm2
0 7.46 --- --- --- 0.118 0.883 1181
6 7.94 5.750 0.683 36.9 9.575 0.647 1491
12 7.77 1.260 0.706 98.7 9.139 0.791 1666
24 7.98 0.745 0.692 124.6 1.291 0.564 2751
168 8.14 0.420 0.723 139.2 1.471 0.759 3483
504 8.02 0.303 0.789 246.7 1.569 0.801 6141
1008 8.33 0.234 0.874 312.8 1.650 0.765 8141
Table 2  Electrochemical parameters obtained by fitting the EIS data
Fig.7  Micrographs of pitting for X80 pipeline steel with corrosion product films for different time after cyclic polarization 0 h (a), 12 h (b) , 24 h (c), 168 h (d), 504 h (e) and 1008 h (f)
[1] Zhang C, Cheng Y F.Synergistic effects of hydrogen and stress on corrosion of X100 pipeline steel in a near-neutral pH solution[J]. J. Mater. Eng. Perform., 2010, 19(9): 1284
[2] Zhou H, Li Q S, Zhu R C.Engineering geological characteristics of saline soil in Ku'erle area in Xinjiang[J]. West-China Explor. Eng., 2000, (3): 37
[2] (周华, 李全胜, 朱瑞成. 新疆库尔勒地区盐渍土的工程地质特征[J]. 西部探矿工程, 2000, (3): 37)
[3] Fu A Q, Cheng Y F.Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC[J]. Corros. Sci., 2010, 52(7): 2511
[4] Liang P, Li X G, Du C W, et al.Influence of chloride ions on the corrosion resistance of X80 pipeline steel in NaHCO3 solution[J]. J. Univ. Sci. Technol. Beijing, 2008, 30(7): 735
[4] (梁平, 李晓刚, 杜翠薇等. Cl-对X80管线钢在NaHCO3溶液中腐蚀性能的影响[J]. 北京科技大学学报, 2008, 30(7): 735)
[5] Esalmi A, Kania R, Worthingham B, et al.Effect of CO2 and R-ratio on near-neutral pH stress corrosion cracking initiation under a disbonded coating of pipeline steel[J]. Corros. Sci., 2011, 53(6): 2318
[6] Liang P, Li X G, Du C W, et al.Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J]. Mater. Des., 2009, 30(5): 1712
[7] Hu J Y, Cao S A, Xie J L.Effect of rust layer on the corrosion behavior of carbon steel in reverse osmosis product water[J]. Acta Phys.-Chim. Sin., 2012, 28(5): 1153)
[7] (胡家元, 曹顺安, 谢建丽. 锈层对海水淡化一级反渗透产水中碳钢腐蚀行为的影响[J]. 物理化学学报, 2012, 28(5): 1153)
[8] Yang J F, Dong J H, Ke W, et al.Influence of pH values and corrosion products on low carbon steel corrosion susceptibility in borate buffer solution[J]. Acta Metall. Sin., 2011, 42(2): 152
[8] (阳靖峰, 董俊华, 柯伟等. 硼酸缓冲溶液中pH值和腐蚀产物对低碳钢活化/钝化敏感性的影响[J]. 金属学报, 2011, 42(2): 152)
[9] Liang P, Wang Y.Electrochemical behavior of X80 steel covered by a rust layer formed after short-term corrosion[J]. J. Chin. Soc. Corros. Prot., 2013, 33(5): 371
[9] (梁平, 王莹. 覆有短期腐蚀产物膜的X80钢的电化学行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 371)
[10] Yu X W, Cao C N.Evaluation of corrosion resistance of rare earth metal (REM) conversion films on LY12 alloy with cyclic anodic polarization curves[J]. Corros. Sci. Prot. Technol., 2001, 13(1): 49
[10] (于兴文, 曹楚南. 循环阳极极化曲线评价LY12A1合金表面稀土转化膜耐腐蚀性能的研究[J]. 腐蚀科学与防护技术, 2001, 13(1): 49)
[11] Song S Z.Methods of Corrosion Electrochemistry Research [M]. Beijing: Chemistry Industry Press, 1988
[11] (宋诗哲. 腐蚀电化学研究方法 [M]. 北京: 化学工业出版社, 1988)
[12] Liu D X.Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2010
[12] (刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2010)
[13] Lin Y Z, Yang D J.Corrosion and Corrosion Control Theory [M]. Beijing: China Petrochemical Press, 2010
[13] (林玉珍, 杨德钧. 腐蚀和腐蚀控制原理 [M]. 北京: 中国石化出版社, 2010)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[10] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[11] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[12] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[13] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[14] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[15] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
No Suggested Reading articles found!