Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (1): 11-19    DOI: 10.11902/1005.4537.2014.278
Orginal Article Current Issue | Archive | Adv Search |
Research Progress on Cavitation-corrosion ofMetallic Materials
Cui LIN1,2(),Xiaobin ZHAO1,Yifei ZHANG1
1. School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2. Corrosion and Protection of Jiangxi Province Key Laboratory of College and University, Nanchang Hangkong University, Nanchang 330063, China
Download:  HTML  PDF(554KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The current status of study on cavitation corrosion of metal materials was comprehensively reviewed with emphasis on experimental methods and the cavitation corrosion behavior of several typical metals (iron, copper, stainless steel, titanium, shape memory alloy). The effects of mechanical properties, chemical composition, microstructure, and surface morphology of materials as well as the parameters of external environment on the cavitation corrosion behavior of metal materials were introduced. Moreover, the directions for further study on cavitation corrosion of metallic materials are also suggested.

Key words:  cavitation corrosion      research method      metallic material      influence factor     

Cite this article: 

Cui LIN,Xiaobin ZHAO,Yifei ZHANG. Research Progress on Cavitation-corrosion ofMetallic Materials. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 11-19.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.278     OR     https://www.jcscp.org/EN/Y2016/V36/I1/11

Factor Indicator Principal effect
Mechanical properties of materials Microhardness Generally, the higher the microhardness of material is, the more resistant to cavitation corrosion is. But the relationship between them is not monotone increase or decrease.
Work-hardening property Higher work-hardening property, more resistant to cavitation corrosion.
Yield strength Higher yield strength, more resistant to cavitation corrosion.
Tensile strength Higher tensile strength, more resistant to cavitation corrosion.
Toughness Higher toughness, more resistant to cavitation corrosion.
Chemical composition and microstructure of materials Chemical composition Higher mass fraction of elements such as Mn, Co and Cr and lower mass fraction of Ni increase the resistance of cavitation corrosion.
Crystal structure The material with austenitic phase is more resistant to cavitation corrosion, resulting from phase transition or plastic deformation caused by its absorption of the impact energy. The resistance of cavitation corrosion of material is mainly determined by the lower intensity phase.
Crystal size The material with fine grains has good mechanical properties, which is beneficial for the resistance of cavitation corrosion.
Stacking fault Lower stacking fault energy of materials, more resistant to cavitation corrosion.
Surface topography Surface roughness Normally, the material with the rough surface is more prone to cavitation corrosion. But the relationship between them is not monotone increase or decrease.
Surface geometry Undulating surface can prolong incubation period, improving the resistance of cavitation corrosion.
External environment Medium flow rate Larger flow rate of medium will promote cavitation corrosion of materials.
Temperature of medium Higher temperature in medium will promote cavitation corrosion of material. But the relationship between them is not monotone increase or decrease.
Corrosive medium Corrosive medium will promote cavitation corrosion of material, and the value of pH and concentration of medium also significantly affect the degree of cavitation corrosion.
Solid particles Solid particles will accelerate cavitation corrosion of material. But the relationship between the size and content of solid particles and the degree of cavitation corrosion is not monotone increase or decrease.
Table 1  Major factors affecting cavitation corrosion of metallic materials
[1] Chen D L.Cavitation and cavitation erosion[J]. China Basic Sci., 2010, (6): 3
[1] (陈大融. 空化与空蚀研究[J]. 中国基础科学, 2010, (6): 3)
[2] Huang J T.Principle and Application of Cavitation and Cavitation Erosion [M]. Beijing: Tsinghua University Press, 1991
[2] (黄继汤. 空化与空蚀的原理及应用 [M]. 北京: 清华大学出版社, 1991)
[3] Jin T L.The research status and trends of cavitation and cavitation erosion[J]. Water Power, 1982, (1): 38
[3] (金泰来. 空化与空蚀研究的现状和动向[J]. 水力发电, 1982, (1): 38)
[4] Li G S, Shen X H, Shi L D, et al.Review of studies on cavitation and cavitation erosion[J]. J. Univ. Petro., 1997, 21(1): 97
[4] (李根生, 沈晓明, 施立德等. 空化与空蚀机理及影响因素[J]. 石油大学学报, 1997, 21(1): 97)
[5] Du C, Xu W L, Wang J D, et al.A characterization method of cavitation erosion incubation period[J]. Lubric. Eng., 2011, 36(3): 16
[5] (杜川, 徐万里, 汪家道等. 空蚀初生期破坏程度的表征方法[J]. 润滑与密封, 2011, 36(3): 16)
[6] Yong X Y, Ji J, Zhang Y Q, et al.AFM morphology and cavitation corrosion process of austenitic stainless steel by cavitation[J]. Corros. Sci. Prot. Technol., 2011, 23(2): 116
[6] (雍兴跃, 吉静, 张雅琴等. 空化作用下奥氏体不锈钢空泡腐蚀的过程与AFM形貌[J]. 腐蚀科学与防护技术, 2011, 23(2): 116)
[7] Li D L.Relationship between the surface layer mechanical properties of austenitic stainless steel with corrosion failure [D]. Beijing: Beijing University of Chemical Technology, 2012
[7] (李栋梁. 奥氏体不锈钢表层力学性质变化与腐蚀失效间的关系[D]. 北京: 北京化工大学, 2012)
[8] Long N D, Zhu J H.Cavitation erosion of TiNiNb alloy[J]. Rare Met. Mater. Eng., 2003, 32(9): 740
[8] (龙霓东, 朱金华. TiNiNb合金的空蚀[J]. 稀有金属材料与工程,2003, 32(9): 740)
[9] Zhang X L, Sun D B, Yu H Y, et al.Research on electrochemical test apparatus of cavitation corrosion [A]. The 20th Anniversary of the Funding of Chinese Society for Corrosion and Protection[C].Beijing, 1999: 559
[9] (张秀丽, 孙冬柏, 俞宏英等. 空泡腐蚀电化学试验装置研究 [A].中国腐蚀与防护学会成立20周年论文集[C]. 北京, 1999: 559)
[10] Fernández-Domene R M, Blasco-Tamarit E, García-García D M, et al. Cavitation corrosion and repassivation kinetics of titanium in a heavy brine LiBr solution evaluated by using electrochemical techniques and confocal laser scanning microscopy[J]. Electrochim. Acta, 2011, 58: 264
[11] Jiang S L, Zheng Y G, Luo S Z, et al.Corrosion behavior of type 316L stainless steel before and after incubation period of cavitation erosion[J]. Corros. Prot., 2004, 25(4): 139
[11] (姜胜利, 郑玉贵, 骆素珍等. 空蚀孕育期前后316L不锈钢的腐蚀行为[J]. 腐蚀与防护, 2004, 25(4): 139)
[12] Brunattoa S F, Allenstein A N, Allenstein C L M, et al. Cavitation erosion behaviour of niobium [J]. Wear, 2012, 274/275: 220
[13] Wu Z W, Chen L, Liang S Z, et al.Cavitation corrosion characteristics of low-carbon steel[J]. Mater. Mech. Eng., 2008, 32(6): 82
[13] (吴志伟, 陈灵, 梁思祖等. 低碳钢的空泡腐蚀特征[J]. 机械工程材料, 2008, 32(6): 82)
[14] Pang Y X, Liu H C, Zhu Z M, et al.Experimental study of interactive erosion and cavitation wears of 40Cr[J]. Lubric. Eng., 2011, 36(8): 20
[14] (庞佑霞, 刘厚才, 朱宗铭等. 40Cr冲蚀与空蚀交互磨损试验研究[J]. 润滑与密封, 2011, 36(8): 20)
[15] Chen H H, Li J, Chen D R, et al.Damages on steel surface at the incubation stage of the vibration cavitation erosion in water[J]. Wear, 2008, 265: 692
[16] Liu H C, Chu A M.Cavitation erosion of 1Cr13[J]. Coal Mine Mach., 2008, 29(10): 33
[16] (刘厚才, 褚爱民. 1Cr13的空蚀磨损性能[J]. 煤矿机械, 2008, 29(10): 33)
[17] Liu S H, Chen D R.On mechanism of cavitation erosion of rough surface[J]. Lubric. Eng., 2009, 34(3): 6
[17] (刘诗汉, 陈大融. 粗糙表面的空蚀机制研究[J]. 润滑与密封, 2009, 34(3): 6)
[18] Wang Z Y, Chen H P, Xu Y G, et al.Failure behavior of 20SiMn steel in erosion and cavitation erosion processes[J]. J. Xi'an Jiaotong Univ., 2002, 36(7): 744
[18] (王再友, 陈黄浦, 徐英鸽等. 20SiMn钢冲蚀和空蚀的失效行为研究[J]. 西安交通大学学报, 2002, 36(7): 744)
[19] Zhang N W.Investigation of cavitation erosion mechanism on several typical materials [D]. Dalian: Dalian Maritime University, 2008
[19] (张念武. 几种典型材料的空蚀磨损机理研究 [D]. 大连: 大连海事大学, 2008)
[20] Deng Y.Cavitation erosion behavior of two typical copper based alloys [D]. Tianjin: Tianjin University, 2007
[20] (邓友. 两种典型铜合金的空蚀行为研究 [D]. 天津: 天津大学, 2007)
[21] Li X Y, Yan Y G, Ma L, et al.Cavitation erosion and corrosion behavior of copper-manganese-aluminum alloy weldment[J]. Mater. Sci. Eng., 2004, A382: 82
[22] Gao D D, Zhang X B, Liao Z K, et al.Failure behavior of tin brass caused by cavitation[J]. J. Chongqing Univ. Technol., 2014, 28(4): 42
[22] (高丹丹, 张小彬, 廖志康等.锡黄铜空蚀破坏的失效行为研究[J]. 重庆理工大学学报, 2014, 28(4): 42)
[23] Niederhofer P, Huth S.Cavitation erosion resistance of high interstitial CrMnCN austenitic stainless steels[J]. Wear, 2013, 301: 457
[24] Luo S Z, Zheng Y G, Jiang S L, et al.Cavitation corrosion resistance of 1Crl8Mnl4N duplex stainless steel in corrosive media[J]. Corros. Sci. Prot. Technol., 2004, 16(6): 352
[24] (骆素珍, 郑玉贵, 姜胜利等. 1Crl8Mnl4N双相不锈钢在腐蚀介质中的抗空蚀性能[J]. 腐蚀科学与防护技术, 2004, 16(6): 352)
[25] Pohl M, Stella J.Quantitative CLSM roughness study on early cavitation-erosion damage[J]. Wear, 2002, 252: 501
[26] García-García D M, García-Antón J, Igual-Mu?oz A, et al. Effect of cavitation on the corrosion behavior of welded and non-welded duplex stainless steel in aqueous LiBr solutions[J]. Corros. Sci., 2006, 48(9): 2380
[27] García-García D M, García-Antón J, Igual-Mu?oz A. Influence of cavitation on the passive behaviour of duplex stainless steels in aqueous LiBr solutions[J]. Corros. Sci., 2008, 50(9): 2560
[28] Zhang Y F, Lin C, Du N, et al.Cavitation corrosion behavior of TC4 titanium alloy in lithium bromide solution[J]. Corros. Prot., 2015, 36(6): 522
[28] (张翼飞, 林翠, 杜楠等. TC4钛合金在溴化锂水溶液中的空蚀行为[J]. 腐蚀与防护, 2015, 36(6): 522)
[29] Pawel S J, Mansur L K.Preliminary evaluation of cavitation-erosion resistance of Ti-alloys in mercury for the spallation neutron source[J]. J. Nucl. Mater., 2010, 398(1-3): 180
[30] Shi Y T.The research on the resistance of the cavitation performance of pure titanium and TC4 titanium alloy [D]. Tianjin: Tianjin University, 2012
[30] (史烨婷. 纯钛及TC4钛合金抗空蚀性能的研究 [D]. 天津: 天津大学, 2012)
[31] Man H C, Cui Z D, Yue T M, et al.Cavitation erosion behavior of laser gas nitride Ti and Ti-6Al-4V[J]. Mater. Sci. Eng., 2003, A355(1/2): 167
[32] Guan X.Cavitation erosion behavior of titanium and Ti-6Al-4V alloy [D]. Tianjin: Tianjin University, 2010
[32] (关昕. 钛及Ti-6Al-4V合金的空蚀行为研究 [D]. 天津: 天津大学, 2010)
[33] Neville A, McDougall B A B. Erosion-and cavitation-corrosion of titanium and its alloys[J]. Wear, 2001, 250(1-12): 726
[34] Cai W, Meng X L, Zhao L C.Recent development of TiNi-based shape memory alloys[J]. Curr. Opin. Solid State Mater. Sci., 2005,9(6): 296
[35] Wang Y S, He Z L, Wang Q, et al.Research progress on properties and application of Ti-Ni shape memory alloys[J]. Mater. Heat Treat., 2009, 38(20): 18
[35] (王永善, 贺志荣, 王启等. Ti-Ni 形状记忆合金性能及应用研究进展[J]. 材料热处理技术, 2009, 38(20): 18)
[36] Liu W, Zheng Y G, Rao G B, et al.Effect of phase transformation pseudo-lasticity on resistance of NiTi alloy to cavitation-abrasion in multiphase flow[J]. Acta Metall. Sin., 2002, 38(2): 185
[36] (柳伟, 郑玉贵, 饶光斌等. 相变伪弹性对NiTi合金多相流损伤的影响[J]. 金属学报, 2002, 38(2): 185)
[37] Long N D, Zhu J H.A comparison of the cavitation erosion resistance of two Fe-based shape memory alloys[J]. Rare Met. Mater. Eng., 2004, 33(8): 852
[37] (龙霓东, 朱金华. 两种铁基形状记忆合金抗空蚀性能比较[J]. 稀有金属材料与工程, 2004, 33(8): 852)
[38] Wu S K, Lin H C, Yeh C H.A comparison of the cavitation erosion resistance of TiNi alloys, SUS304 stainless steel and Ni-based self-fluxing alloy[J]. Wear, 2000, 244: 85
[39] Wang Z Y, Zhu J H.Cavitation erosion of a Fe-25Mn-6Si-7Cr shape memory alloy[J]. Chin. J. Mater. Res., 2003, 17(1): 39
[39] (王再友, 朱金华. Fe-25Mn-6Si-7Cr形状记忆合金空蚀研究[J].材料研究学报, 2003, 17(1): 39)
[40] Rudakov A A.Relation between parameters of cavitation resistance and structure of steels[J]. Met. Sci. Heat Treat., 2005, 47(1/2): 12
[41] Mochizuki H, Yokota M, Hattori S.Effects of materials and solution temperatures on cavitation erosion of pure titanium and titanium alloy in seawater[J]. Wear, 2007, 262(5/6): 522
[42] Xu G F, Qin M M, Lei Y C, et al.Cavitation erosion resistance of Cr-Ni-Mo and Cr-Ni-Co overlaying alloys[J]. Rare Met. Mater. Eng., 2012, 41(9): 1555
[42] (徐桂芳, 秦敏明, 雷玉成等. 新型Cr-Ni-Mo和Cr-Ni-Co堆焊合金空蚀性能[J]. 稀有金属材料与工程, 2012, 41(9): 1555)
[43] Liu W, Zheng Y G, Liu C S, et al.Cavitation erosion behavior of Cr-Mn-N austenite-ferrite stainless steel[J]. Acta Metall. Sin., 2003, 39(1): 85
[43] (柳伟, 郑玉贵, 刘常升等. Cr-Mn-N奥氏体不锈钢的空蚀行为[J]. 金属学报, 2003, 39(1): 85)
[44] Liu W, Zheng Y G, Liu C S, et al.Cavitation erosion behavior of Cr-Mn-N stainless steels in comparison with 0Cr13Ni5Mo stainless steel[J]. Wear, 2003, 254: 713
[45] Qin B, Qin C P, Zheng Y G.Effect of mechanical properties on cavitation erosion resistance of 00Crl3Ni5Mo martensitic stainless steel[J]. Large Electr. Mach. Hydraul. Turb., 2013, (4):45
[45] (秦斌, 秦承鹏, 郑玉贵. 力学性能对低碳马氏体不锈钢00Crl3Ni5Mo抗空蚀性能的影响[J]. 大电机技术, 2013, (4): 45)
[46] Liu J.Cavitation corrosion resistance of cast high strength titanium alloy[J]. Develop. Appl. Mater., 1996, 11(1): 13
[46] (刘激. 高强度铸造钛合金的耐空蚀性能[J]. 材料开发与应用,1996, 11(1): 13)
[47] Jiang G B, Zheng Y K, Yang Y Y, et al.Cavitation erosion of bainitic steel[J]. Wear, 1998, 215: 46
[48] B?dkowski W, Gasiak G, Lachowicz C, et al.Relations between cavitation erosion resistance of materials and their fatigue strength under random loading[J]. Wear, 1999, 230: 201
[49] Liu Q, Li B, Chen X Z, et al.Study on an Cr-Co-Ni-Mn austenitic stainless steel for cavitation erosion[J]. J. Funct. Mater., 2012, 43(5): 673
[49] (刘强, 李波, 陈希章等. 新型耐空蚀Cr-Co-Ni-Mn奥氏体不锈钢研究[J]. 功能材料, 2012, 43(5): 673)
[50] Park M C, Kim K N, Shin G S, et al.Effects of Ni and Mn on the cavitation erosion resistance of Fe-Cr-C-Ni/Mn austenitic alloys[J]. Tribol. Lett., 2013, 52(3): 477
[51] Liu Q, Li B, Chen X Z, et al.Cavitation erosion behavior of a Cr-Co-Ni-Mn austenitic steel[J]. Corros. Sci. Prot. Technol., 2012, 24(5): 381
[51] (刘强, 李波, 陈希章等. Cr-Co-Ni-Mn奥氏体钢的空泡腐蚀研究[J]. 腐蚀科学与防护技术, 2012, 24(5): 381)
[52] Park M C, Kim K N, Shin G S, et al. Effects of strain induced martensitic transformation on the cavitation erosion resistance and incubation time of Fe-Cr-Ni-C alloys [J]. Wear, 2012, 274/275: 28
[53] Xiaojun Z, Procopiak L A J, Souza N C, et al. Phase transformation during cavitation erosion of a Co stainless steel[J]. Mater. Sci. Eng., 2003, A358: 199
[54] Wang Z Y, Zhu J H.Effect of phase transformation on cavitation erosion resistance of some ferrous alloys[J]. Mater. Sci. Eng., 2003, A358: 273
[55] Chen Y.Comparison of cavitation erosion resistance between irons and steels[J]. Hot Work. Technol., 2000, (3): 25
[55] (陈岩. 不同材料抗气蚀性能的比较[J]. 热加工工艺, 2000, (3):25)
[56] Bregliozzi G, Schino A D, Ahmed S I -U, et al. Cavitation wear behaviour of austenitic stainless steels with different grain sizes[J].Wear, 2005, 258: 503
[57] Zhang X F, Fang L.The effect of stacking fault energy on the cavitation erosion resistance of α-phase aluminum bronzes[J]. Wear, 2002, 253: 1105
[58] Cuppari M G D V, Souza R M, Sinatora A. Effect of hard second phase on cavitation erosion of Fe-Cr-Ni-C alloys[J]. Wear, 2005,258: 596
[59] Liu S H, Chen D R.Mechanics mechanism of duplex steel cavitation damage[J]. Acta Metall. Sin., 2009, 45(5): 519
[59] (刘诗汉, 陈大融. 双相钢空蚀破坏的力学机制[J]. 金属学报,2009, 45(5): 519)
[60] Li Y J.Study on mechanism of surface topograhpy effects on generation of cavitation erosion [D]. Beijing: Tsinghua University, 2008
[60] (李永健. 空蚀发生过程中表面形貌作用机理研究 [D]. 北京: 清华大学, 2008)
[61] Espitia L A, Toro A.Cavitation resistance, microstructure and surface topography of materials used for hydraulic components[J]. Tribol. Int., 2010, 43: 2037
[62] Mochizuki H, Yokota M, Hattori S.Effects of materials and solution temperatures on cavitation erosion of pure titanium and titanium alloy in seawater[J]. Wear, 2007, 262: 522
[63] Kwok C T, Man H C, Leung L K.Effect of temperature, pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel[J]. Wear, 1997, 211: 84
[64] Liao T T.Research on the effect of temperature, cavitation and erosion[J]. China Rural Water Hydropower, 2011, (10): 133
[64] (廖庭庭. 温度与空化空蚀的影响关系研究[J]. 中国农村水利水电, 2011, (10): 133)
[65] Franc J P, Riondet M, Karimi A, et al. Material and velocity effects on cavitation erosion pitting [J]. Wear, 2012, 274/275: 248
[66] Yong X Y, Lin Y Z, Liu J J, et al.Erosion corrosion of duplex stainless steel in flowing neutral chloride containing sand[J]. Acta Metall. Sin., 2001, 37(7): 745
[66] (雍兴跃, 林玉珍, 刘景军等. 双相钢在流动中性含砂氯化物中的磨损腐蚀[J]. 金属学报, 2001, 37(7): 745)
[67] Wang Z Y, Long N D, Zhu J H.Review on materials resistant to cavitation erosion and its application[J]. Develop. Appl. Mater., 2001, 16(6): 34
[67] (王再友, 龙霓东, 朱金华. 抗空蚀材料研究应用进展[J]. 材料开发与应用, 2001, 16(6): 34)
[68] Liu W, Zheng Y G, Jing H M, et al.Cavitation erosion of 20SiMn in single liquid and liquid-solid two-phase medium[J]. J. Chin. Soc. Corros. Prot., 2001, 21(5): 286
[68] (柳伟, 郑玉贵, 敬和民等. 20SiMn在单相液流和液固双相流中的空蚀行为[J]. 中国腐蚀与防护学报, 2001, 21(5): 286)
[69] Krella A.Influence of cavitation intensity on X6CrNiTi18-10 stainless steel performance in the incubation period[J]. Wear, 2005, 258: 1723
[1] Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN. Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[2] Ying YANG, Cui LIN, Xiaobin ZHAO, Yifei ZHANG. Initial Stage Cavitation-corrosion of TA2 in Aqueous LiBr Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 540-546.
[3] Dongbai XIE,Guo SHAN. Rapid Identification of Liquid Accelerant in Fire Scene Environment[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[4] Mumeng WEI,Bojun YANG,Yangyang LIU,Xiaoping WANG,Jinghua YAO,Lingqing GAO. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[5] JIANG Xiu, QU Dingrong, LIU Xiaohui. RESEARCH DEVELOPMENT OF TOP OF LINE CORROSION(TLC) IN WET NATURAL GAS PIPELINES[J]. 中国腐蚀与防护学报, 2011, 31(2): 86-90.
[6] YONG Xingyue, JI Jing, ZHANG Yaqin, LI Dongliang, ZHANG Zhanjia. QUANTITATIVE DETERMINATION OF MECHANICAL PROPERTIES FOR CAVITATION CORROSION SURFACE LAYER OF METAL BY MICRO/NANO MECHANICS MEASUREMENT TECHNOLOGY[J]. 中国腐蚀与防护学报, 2011, 31(1): 40-45.
[7] WANG Chunli, WU Jianhua, LI Qingfen. RECENT ADVANCES AND PROSPECT OF GALVANIC CORROSION IN MARINE ENVIRONMENT[J]. 中国腐蚀与防护学报, 2010, 30(5): 416-420.
[8] ;. Coking and Carburizing Behaviors of Metal Materials in High Temperature Carbon-Containing Atmosphere[J]. 中国腐蚀与防护学报, 2004, 24(3): 188-192 .
[9] . RESEARCH PROGRESS ON CAVITATIONEROSION OF METALLIC MATERIALS[J]. 中国腐蚀与防护学报, 2001, 21(4): 250-255 .
No Suggested Reading articles found!