Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (4): 305-310    DOI: 10.11902/1005.4537.2014.122
Current Issue | Archive | Adv Search |
Corrosion and Corrosion Inhibition of 304 Stainless Steel in Acidic FeCl3 Solution with Applied Inhibitor K2Cr2O7 and Ultrasonic Vibration
Yurong FANG,Chaoyang FU()
Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download:  HTML  PDF(2863KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion and corrosion inhibition of type 304 stainless steel (304SS) were studied by weight loss method and electrochemical methods in 6%FeCl3 solution of pH=1 with or without inhibitor K2Cr2O7 under quiescent and ultrasonic vibration. Then the surface morphology of the corroded steel was observed by scanning electron microscope (SEM). The results indicate that the general corrosion and pitting corrosion of 304SS can be suppressed by the application of ultrasound. The corrosion of 304SS is accelerated when concentration of K2Cr2O7 is lower in the quiescence FeCl3 solution, but different concentration of K2Cr2O7 exhibits a good corrosion inhibition effect under ultrasonic vibration in the same FeCl3 solution. The combination of ultrasound and inhibitor K2Cr2O7 make the break potential for pitting corrosion and charge transfer resistance of 304SS increased greatly. Therefore, a good synergistic inhibition effect occurs between ultrasonic vibration and inhibitor K2Cr2O7 for 304SS in the acidic medium.

Key words:  type 304 stainless steel      FeCl3 solution      pitting corrosion      corrosion inhibitor      ultrasonic effect     

Cite this article: 

Yurong FANG,Chaoyang FU. Corrosion and Corrosion Inhibition of 304 Stainless Steel in Acidic FeCl3 Solution with Applied Inhibitor K2Cr2O7 and Ultrasonic Vibration. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 305-310.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.122     OR     https://www.jcscp.org/EN/Y2015/V35/I4/305

Quiescence condition Corrosion rate / gm-2h-1 Inhibition efficiency Ultrasonic condition Corrosion rate gm-2h-1 Inhibition efficiency
Inhibitor free 18.28 --- Inhibitor free 8.493 ---
20 mg/L K2Cr2O7 19.11 -4.5% 20 mg/L K2Cr2O7 4.395 48.3%
50 mg/L K2Cr2O7 21.54 -17.8% 50 mg/L K2Cr2O7 0.313 96.3%
100 mg/L K2Cr2O7 22.64 -23.9% 100 mg/L K2Cr2O7 0.282 96.7%
200 mg/L K2Cr2O7 23.20 -26.9% 200 mg/L K2Cr2O7 0.172 98.0%
500 mg/L K2Cr2O7 19.04 -4.2% 500 mg/L K2Cr2O7 0.143 98.3%
1000 mg/L K2Cr2O7 15.37 15.9% 1000 mg/L K2Cr2O7 0.135 98.4%
2000 mg/L K2Cr2O7 9.10 50.2% 2000 mg/L K2Cr2O7 0.123 98.6%
5000 mg/L K2Cr2O7 0.457 97.5% 5000 mg/L K2Cr2O7 0.065 99.2%
Table 1  Mass losses of 304SS after immersion tests under different conditions
Fig.1  Corrosion appearances of 304SS after immersion for 6 h in 6.0%FeCl3 solution (pH=1) without (a, c) and with (b, d) 2000 mg/L K2Cr2O7 in quiescence (a, b) and ultrasound (c, d), respectively
Fig.2  Anodic curves of 304SS in different conditions
Fig.3  Nyquist (a), impedance module (b) and phase angle (c) plots of 304SS under different conditions
Fig.4  Equivalent circuit
Experimental condition Rs / Ωcm2 CPE-T / Fcm-2 CPE-P Rct / Ωcm2
Quiescence/blank 4.902 3.34×10-4 0.765 46.2
Quiescence/2000 mg/L K2Cr2O7 0.808 4.59×10-4 0.813 149.8
Ultrasound/blank 1.750 1.22×10-4 0.855 167.4
Ultrasound/2000 mg/L K2Cr2O7 1.388 2.54×10-4 0.687 1156
Table 2  Values of equivalent circuit elements of 304SS
Fig.5  FE-SEM surface morphologies of 304SS under different experimental conditions: (a) quiescence/blank, (b) ultrasound/blank, (c) quiescence/2000 mg/L K2Cr2O7, (d) ultrasound/2000 mg/L K2Cr2O7
[1] Kwok C T, Cheng F T, Man H C. Laser-fabricated Fe-Ni-Co-Cr-B austenitic alloy on steels. Part II. Corrosion behaviour and corrosion-erosion synergism[J]. Surf. Coat. Technol., 2001, 145(1-3): 206
[2] Wang R, Kido M. Influence of input power to vibrator and vibrator-to-specimen distance of ultrasound on pitting corrosion of SUS304 stainless steel in 3.5% chloride sodium aqueous solution[J]. Corros. Sci., 2009, 51(8): 1604
[3] Wang R. Influence of ultrasound on pitting corrosion and crevice corrosion of SUS304 stainless steel in chloride sodium aqueous solution[J]. Corros. Sci., 2008, 50(2): 325
[4] Whillock G O H,Harvey B F. Ultrasonically enhanced corrosion of 304L stainless steel I: The effect of temperature and hydrostatic pressure [J]. Ultrason. Sonochem., 1997, 4(1): 23
[5] Wang B C, Zhu J H. Semiconducting behaviors of passive films of stainless steel under ultrasonic cavitation[J]. Acta Metall. Sin.,2007, 43(8): 813 (王保成, 朱金华. 超声空化下不锈钢钝化膜的半导行为[J]. 金属学报, 2007, 43(8): 813)
[6] Lavigne O, Takeda Y, Shoji T, et al. Water irradiation by high-frequency ultrasonic wave: Effects on properties of passive film formed on stainless steel[J]. Ultrason. Sonochem., 2011, 18(6): 1287
[7] GB/T 17897-1999. Testing method of pitting corrosion ressistance of stainless steels in the ferric chloride solutionB/T 17897-1999. Testing method of pitting corrosion ressistance of stainless steels in the ferric chloride solution[S] (GB/T 17897-1999. 不锈钢三氯化铁点腐蚀试验方法B/T 17897-1999. 不锈钢三氯化铁点腐蚀试验方法[S])
[8] GB/T 17899-1999. Method of pitting potential measurement for stainless steelsB/T 17899-1999. Method of pitting potential measurement for stainless steels[S] (GB/T 17899-1999. 不锈钢点蚀电位测量方法B/T 17899-1999. 不锈钢点蚀电位测量方法[S])
[9] Qu X H, Xu C C, Lv G C, et al. Corrosion behavior of 304 stainless steels in low hardness cooling water containing Cl-, SO42- and RP-98H water treatment agent[J]. J. Chin. Soc. Corros. Prot., 2009, 29(3): 187 (曲秀华, 许淳淳, 吕国诚等. 低硬度循环冷却水中Cl-、SO42-及水处理剂对304不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 187)
[10] Sun D, Jiang Y, Tang Y, et al. Pitting corrosion behavior of stainless steel in ultrasonic cell[J]. Electrochim. Acta, 2009, 54(5): 1558
[11] Liu F. Study on corrosion of the SUS304 stainless steel by means of ultrasound [D]. Wuhan: Huazhong University of Science and Technology, 2013 (刘芳. 超声作用下304不锈钢的腐蚀研究 [D]. 武汉: 华中科技大学, 2013)
[12] Lavigne O, Takeda Y, Shoji T, et al. Generation of hydroxyl radicals by sonochemistry: Effects on the electrochemical behaviour of a 316L stainless steel[J]. Corros. Sci., 2011, 53(3): 1079
[13] Wang X Y, Wu Y S, Zhang L, et al. Corrosion behavior in 3.5% NaCl solution of 316LSS passinated in an oxidizing acid liquor[J]. Corros. Sci. Prot. Technol., 2000, 12(6): 311 (汪轩义, 吴荫顺, 张琳等. 316L不锈钢钝化膜在Cl-介质中的耐蚀机制[J]. 腐蚀科学与防护技术, 2000, 12(6): 311)
[14] Jiang Y, Ai Y Y, Zhou B B, et al. An XPS investigation of passive film formation on a maraging stainless steel[J]. Corros. Prot., 2012, 33(10): 856 (姜越, 艾莹莹, 周蓓蓓等. 马氏体时效不锈钢钝化膜XPS研究[J]. 腐蚀与防护, 2012, 33(10): 856)
[15] Wang Y, Shi Y X, Wei B M, et al. A XPS study of rebar passive film and effect of chloride ions on it[J]. J. Chin. Soc. Corros. Prot., 1998, 18(2): 102 (汪鹰, 史苑香, 魏宝明等. 用XPS研究钢筋钝化膜和C1-对钝化膜的影响[J]. 中国腐蚀与防护学报, 1998, 18(2): 102)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[7] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[8] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[9] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[10] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[11] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[12] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[13] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[14] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
No Suggested Reading articles found!