Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (3): 239-244    DOI: 10.11902/1005.4537.2014.078
Current Issue | Archive | Adv Search |
Corrosion Behavior of 5083 Al-alloy in Seawater and Its Cathodic Protection
Zaijian LIU1,Jia WANG1,2(),Penghui ZHANG1,Yanhua WANG1,Yuan ZHANG1
1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(1628KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 5083 Al-alloy in seawater was studied by electrochemical methods, and the influence of Cl- concentration on its pitting behavior was investigated. The results showed that the pitting potential of 5083 Al-alloy in seawater was -690 mV and the corresponding protective potential was -720 mV. Cl- is the main active ion for pitting corrosion of 5083 Al-alloy. For the solutions with the same ion strength but varied Cl- concentration in a range of 0~0.1 mol/kg, the pitting potential decreased quickly with the increasing Cl- concentration. When Cl- concentration exceeded 0.1 mol/kg, the pitting corrosion potential would no longer change obviously. In the meanwhile, the cathodic protection potential for 5083 Al-alloy was validated in a range of -800~-1000 mV by polarization experiment, which provides the basis for its protection while used in seawater.

Key words:  5083 Al-alloy      pitting corrosion      Cl-      cathode protection     

Cite this article: 

Zaijian LIU,Jia WANG,Penghui ZHANG,Yanhua WANG,Yuan ZHANG. Corrosion Behavior of 5083 Al-alloy in Seawater and Its Cathodic Protection. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 239-244.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.078     OR     https://www.jcscp.org/EN/Y2015/V35/I3/239

Fig.1  Schematic diagram of 5083 aluminum alloy electrode
Number V N a 2 S O 4 / mL VNaCl / mL c C l - / molkg-1
1 500 0 0
2 500 0.5 6.20×10-4
3 499 1 1.20×10-3
4 490 10 1.20×10-2
5 400 100 0.12
6 300 200 0.25
7 250 250 0.31
8 200 300 0.37
9 100 400 0.50
10 0 500 0.62
Table 1  Constitutes of mixed solutions with the same ion strength but different chloride ion content
Fig.2  Variation of corrosion potential of 5083 aluminum alloy in seawater with time
Fig.3  Variation of current density with potential for 5083 aluminum alloy in seawater
Fig.4  Variations of current density with potential for 5083 aluminum alloy in different mixed solutions
Fig.5  Variation of pitting potential with Cl- concentration for 5083 aluminum alloy
Fig.6  Variation of current density with potential in the range of -1200~-700 mV
Fig.7  5083 aluminum alloy electrode without immersion
Fig.8  Surface morphologies of 5083 aluminum alloy electrode immersed under different polarization potentials for 2 d (a), 10 d (b) and 19 d (c)
[1] Tian R Z. Cast Aluminum Alloy[M]. Changsha: Central South University Press, 2006 (田荣璋. 铸造铝合金[M]. 长沙: 中南大学出版社, 2006)
[2] Schumacher M. Translated by Li D C,Yang M,et al. Seawater Corrosion Handbook[M]. Beijing: National Defend Industry Press, 1985 (Schumacher M编. 李大超, 杨荫等译. 海水腐蚀手册[M]. 北京: 国防工业出版社, 1985)
[3] Jafarzadeh K, Shahrabi T, Hosseini M G. EIS study on pitting corrosion of AA5083-H321 aluminum-magnesium alloy in stagnant 3.5%NaCl solution[J]. J. Mater. Sci. Technol., 2008, 24(2): 215
[4] Yang T J, Li G M, Chen S, et al. Study of hull aluminum alloy pitting and its protection potential[J]. Equip. Environ. Eng., 2010, 7(2): 88 (杨铁军, 李国明, 陈珊等. 船用铝合金点蚀及阴极保护研究[J]. 装备环境工程, 2010, 7(2): 88)
[5] Sun B D, Li K. Present research situation and development trend of corrosion protection treatment of Al and Al alloys[J]. Corros. Prot., 1998, 19(5): 195 (孙宝德, 李克. 铝及铝合金防腐蚀表面处理技术的研究现状与发展[J]. 腐蚀与防护, 1998, 19(5): 195)
[6] Wang H R, Wu J H, Wang J T, et al. Study on the corrosion and electrochemical properties of Alloy AA5083 and the effect of active chlorine in seawater[J]. Electrochemistry, 2003, 9(1): 60 (王洪仁, 吴建华, 王均涛等. 5083 铝合金在海水中的腐蚀电化学行为及活性氯影响研究[J]. 电化学, 2003, 9(1): 60)
[7] Ma T, Wang Z Y, Han W. A review of atmospheric corrosion of aluminum and aluminum alloys[J]. Corros. Sci. Prot. Technol., 2004,16(3): 155 (马腾, 王振尧, 韩薇. 铝和铝合金的大气腐蚀[J]. 腐蚀科学与防护技术, 2004, 16(3): 155)
[8] Xu L X, Hu J, Geng L, et al. Pitting behavior of aluminum[J]. Aero.Mater. Technol., 2002, 32(2): 21 (徐丽新, 胡津, 耿林等. 铝的点蚀行为[J]. 宇航材料工艺, 2002, 32(2): 21)
[9] Tao B W, Li S M, Liu J H. Local corrosion behaviors of LY6 aluminum alloy in Cl- environment[J]. Mater. Prot., 2005, 37(11): 15 (陶斌武, 李松梅, 刘建华. LY6 铝合金的局部腐蚀行为研究[J]. 材料保护, 2005, 37(11): 15)
[10] Wu J H, Wen X B, Liu G Z, et al. Anti-corrosion effect of cathodic protection on mild steel immersed cyclically in seawater[J]. J. Chin. Soc. Corros. Prot., 1998, 18(2): 131 (吴建华, 温秀忭, 刘光洲等. 阴极保护对海水间浸低碳钢的防蚀作用[J]. 中国腐蚀与防护学报, 1998, 18(2): 131)
[11] Lv X Y. Study on 5083 aluminum alloy hot rolling plate[J]. Light. Alloy. Fabric. Technol., 2002, 30(3): 15 (吕新宇. 5083 铝合金热轧板研究[J]. 轻合金加工技术, 2002, 30(3): 15)
[12] Zhou Q B, Zhang H W, Leng J F, et al. Effect of chemical components on properties of 5083 aluminum alloy[J]. Light. Alloy. Fabric. Technol., 2007, 35(10): 33 (周庆波, 张宏伟, 冷金凤等. 化学成分对5083铝合金性能的影响[J]. 轻合金加工技术, 2007, 35(10): 33)
[13] Song C H, Gan Z H, Lu Z H, et al. Preparation and electrochemical properties of AlMgZnSnPbCuMnNi high entropy alloys with low free corrosion potentials[J]. J. Mater. Sci. Eng., 2011, 29(5):747 (宋春晖, 甘章华, 卢志红等. 具有低自腐蚀电位的AlMgZnSnPbCuMnNi高熵合金的制备及其电化学性能[J]. 材料科学与工程学报, 2011, 29(5): 747)
[14] Cao C N. Principles of Electrochemistry of Corrosion[M]. Beijing: Chemical Industry Press, 2004 (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2004)
[15] Zhan G S, Mou Z Q. Pitting corrosion behavior of Al-Zn-In-Si alloys in NaCl solutions[J]. J. Chin. Soc. Corros. Prot., 1996, 16(3):230 (战广深, 牟战旗. Al-Zn-In-Si 合金在NaCl溶液中的小孔腐蚀行为[J]. 中国腐蚀与防护学报, 1996, 16(3): 230)
[16] Chang H, Han E-H, Wang J Q, et al. Influence of cathodic polarization on corrosion fatigue life of aluminum alloy LY12CZ[J]. Acta Metall. Sin., 2005, 41(5): 556 (常红, 韩恩厚, 王俭秋等. 阴极极化对 LY12CZ 铝合金腐蚀疲劳寿命的影响[J]. 金属学报, 2005, 41(5): 556)
[17] Huang Z X, He Y D, Hou L. Electrochemical behavior within the SCC cracks of aluminum alloy LC-4[J]. J. Chin. Soc. Corros. Prot., 1984, 4(1): 30 (黄子勋, 何业东, 侯力. LC-4铝合金应力腐蚀裂纹内的电化学行为[J]. 中国腐蚀与防护学报, 1984, 4(1): 30)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] DENG Peichang, ZHONG Jie, WANG Kun, HU Jiezhen, LI Ziyun, CHEN Chuxin, SHEN Xiaohan. Important Influential Factor for Corrosion of High-altitude Marine Engineering Equipment in Atmosphere-chloride Ion Deposition Rate[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[6] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[9] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[10] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[11] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[12] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[13] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[14] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[15] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
No Suggested Reading articles found!