Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (6): 483-488    DOI: 10.11902/1005.4537.2014.020
Current Issue | Archive | Adv Search |
Review on Marine Antifouling Coatings
LIU Jiao1,2, HE Qiwei3, CHEN Hong1(), CHEN Yu2, ZHANG Zhao2(), ZHANG Jianqing2
1. Department of Material Science and Technology, Central South Forestry University of Science and Technology, Changsha 410007, China
2. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
3. MIUR, Naval University of Engineering, Wuhan 430033, China
Download:  HTML  PDF(386KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this review, the major anti-fouling strategies based on physical-, chemical- and biological-methods are presented, while their advantages and disadvantages are analyzed. Then fouling release-, conductive antifouling- and silicate antifouling-coatings are described in detail. It is proposed that the fouling release coatings which combine the nanotechnology with the bionic technology will be one of the most important antifouling approaches.

Key words:  marine antifouling      marine biofouling      fouling release coating     
ZTFLH:  O646  

Cite this article: 

LIU Jiao, HE Qiwei, CHEN Hong, CHEN Yu, ZHANG Zhao, ZHANG Jianqing. Review on Marine Antifouling Coatings. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 483-488.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.020     OR     https://www.jcscp.org/EN/Y2014/V34/I6/483

[1] Piola R F, Dafforn K A, Johnston E L. The influence of antifouling practices on marine invasions[J]. Biofouling, 2009, 25(7): 633-644
[2] Maréchal J P, Hellio C. Challenges for the development of new non-toxic antifouling solutions[J]. Int. J. Mol. Sci., 2009, 10(11): 4623-4637
[3] Schultz M P, Bendick J A, Holm E R, et al. Economic impact of biofouling on a naval surface ship[J]. Biofouling, 2011, 27(1): 87-98
[4] Schultz M P. Effects of coating roughness and biofouling on ship resistance and powering[J]. Biofouling, 2007, 23(5): 331-341
[5] Müller W E G, Wang X, Proksch P, et al. Principles of biofouling protection in marine sponges: A model for the design of novel biomimetic and bio-inspired coatings in the marine environment?[J]. Mar. Biotechnol., 2013, 15(4): 375-398
[6] Chambers L D, Stokes K R, Walsh F C, et al. Modern approaches to marine antifouling coatings[J]. Surf. Coat. Technol., 2006, 201(6): 3642-3652
[7] Kirschner C M, Brennan A B. Bio-inspired antifouling strategies[J]. Annu. Rev. Mater. Res., 2012, 42: 211-229
[8] Cao S, Wang J D, Chen H S, et al. Progress of marine biofouling and antifouling technologies[J]. Chin. Sci. Bull., 2011, 56(7): 598-612
[9] Huang Y T, Peng Q. The prevention method and research development of marine fouling[J]. Total Corros. Control, 2004, 18(1): 3-5
(黄运涛, 彭乔. 海洋生物污损的防治方法及研究进展[J]. 全面腐蚀控制, 2004, 18(1): 3-5)
[10] Holm E R, Haslbeck E G, Horinek A A. Evaluation of brushes for removal of fouling from fouling-release surfaces, using a hydraulic cleaning device[J]. Biofouling, 2003, 19(5): 297-305
[11] Xu Z, Ou Y Q, Yi D H. Antifouling method of marine fouling organisms—a review[J]. Corros. Sci. Prot. Technol., 2012, 24(3): 192-197
(胥震, 欧阳清, 易定和. 海洋污损生物防除方法概述及发展趋势[J]. 腐蚀科学与防护技术, 2012, 24(3): 192-197)
[12] Chen M L, Qu Y Y, Yang L, et al. Structures and antifouling properties of low surface energy non-toxic antifouling coatings modified by nano-SiO2 powder[J]. Sci. China, 2008, 51(9)B: 848-852
[13] Guo S, Lee H P, Khoo B C. Inhibitory effect of ultrasound on barnacle (Amphibalanus amphitrite) cyprid settlement[J]. J. Exp. Mar. Biol. Ecol., 2011, 409(1): 253-258
[14] Chen C C, Xiang L Y, Liu H Q. Adhension mechanism and prevention of marine biofouling barnacle[J]. Mar. Environ. Sci., 2012, 31(4): 621-624
(陈长春, 项凌云, 刘汉奇. 海洋污损生物藤壶的附着与防除[J]. 海洋环境科学, 2012, 31(4): 621-624)
[15] Li C Y, Zhang G F, Fu H T. Development and application of electrolyzing seawater antifouling technique[J]. Develop. Appl. Mater., 1996, 11(1): 38-43
(李长彦, 张桂芳, 付洪田. 电解海水防污技术的发展及应用[J].材料开发与应用, 1996, 11(1): 38-43)
[16] Dong L. The synthesis of capsaicin and indole derivative and its application in antifouling paints [D]. Qingdao: Ocean University of China, 2004
(董磊. 辣素和吲哚衍生物的合成及其在防污涂料中的应用研究[D]. 青岛: 中国海洋大学, 2004)
[17] Nylund G M, Pavia H. Inhibitory effects of red algal extracts on larval settlement of the barnacle Balanus improvisus[J]. Mar. Biol., 2003, 143(5): 875-882
[18] McCaffrey E J, Endean R. Antimicrobial activity of tropical and subtropical sponges[J]. Mar. Biol., 1985, 89(1): 1-8
[19] Sabdono A, Radjasa O K. Antifouling activity of bacteria associated with soft coral Sarcophyton sp. aganist marine biofilm-forming bacteria[J]. Coast. Develop., 2013, 10(1): 55-62
[20] Xu H Z, Yu L M, Li C C, et al. Synthesis of acrylamides containing capsaicin derivative moiety and their growth inhibition against nitzschia closterium[J]. Chin. J. Appl. Chem., 2007, 24(8): 317-323
(徐焕志, 于良民, 李昌诚等. 辣素衍生物的合成及其对新月菱形藻生长的抑制活性[J]. 应用化学, 2007, 24(8): 317-323)
[21] Bellotti N, del Amo B, Romagnoli R. Quaternary ammonium “tannate” for antifouling coatings[J]. Ind. Eng. Chem. Res., 2012, 51(51): 16626-16632
[22] Bellotti N, del Amo B, Romagnoli R. Caesalpinia spinosa tannin derivatives for antifouling formulations[J]. Procedia Mater. Sci., 2012, 1: 259-265
[23] Pérez M, García M, Stupak M, et al. Synthesis and characterization of ferric sorbate and aluminum sorbate as antifouling pigments for marine paints[J]. Ind. Eng. Chem. Res., 2014, 53(9): 3570-3577
[24] Jiang X H, Yu L M, Dong L, et al. Synthesis and the toxicity and antifouling capability of new isothiazolinone derivatives[J]. Fine Chem., 2007, 24(2): 125-129
(姜晓辉, 于良民, 董磊等. 新型防污剂异噻唑啉酮衍生物的合成、生物毒性与防污性能研究[J]. 精细化工, 2007, 24(2): 125-129)
[25] Yebra D M, Kiil S, Dam-Johansen K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Prog. Org. Coat., 2004, 50(2): 75-104
[26] Dafforn K A, Lewis J A, Johnston E L. Antifouling strategies: history and regulation, ecological impacts and mitigation[J]. Mar. Pollut. Bull., 2011, 62(3): 453-465
[27] Young G H, Seagren G W, Zehner J C. Antifouling paints[J]. Ind. Eng. Chem. Res., 1945, 37(5): 461-464
[28] Young G H, Peter G, Pittsburgh. Antifouling Paint [P]. US:2287218, 1942-6-23
[29] Freiman A. Coating Composition [P]. US: 38450059, 1974-10-2
[30] Evans S M, Leksono T, McKinnell P D. Tributyltin Pollution: a diminishing problem following legislation limiting the use of TBT-based anti-fouling paints[J]. Mar. Pollut. Bull., 1995, 30(1): 14-21
[31] Zhang J W, Lin C G, Wang L, et al. The influence of pollution release coating properties on ship antifouling performance[J]. Mod. Paint Finish., 2010, 13(2): 17-22
(张金伟, 蔺存国, 王利等. 污损释放涂层性质对船舶防污性能的影响[J]. 现代涂料与涂装, 2010, 13(2): 17-22)
[32] Brady Jr R F, Singer I L. Mechanical factors favoring release from fouling release coatings[J]. Biofouling, 2000, 15(1-3): 73-81
[33] Brady Jr R F. A fracture mechanical analysis of fouling release from nontoxic antifouling coatings[J]. Prog. Org. Coat., 2001, 43(1): 188-192
[34] Lejars M, Margaillan A, Bressy A. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings[J]. Chem. Rev., 2012, 112(8): 4347-4390
[35] Zhang C Y, Zhang X Y, Dai J B, et al. Synthesis and properties of PDMS modified waterborne polyurethane-acrylic hybrid emulsion by solvent-free method[J]. Prog. Org. Coat., 2008, 63(2): 238-244
[36] Pan Y, Zhang Z P, Zhou J L, et al. Controlling factors and progress of low surface energy silicone antifouling coatings[J]. Paint Coat. Ind., 2009, 39(12): 58-61
(潘莹, 张占平, 周建龙等. 有机硅低表面能防污涂料控制因素与研究进展[J]. 涂料工业, 2009, 39(12): 58-61)
[37] Sommer S, Ekin A, Webster D C, et al. A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly (dimethylsiloxane)(PDMS) macromers[J]. Biofouling, 2010, 26(8): 961-972
[38] Rahman M M, Chun H H, Park H. Preparation and properties of waterborne polyurethane-silane: a promising antifouling coating[J]. Macromol. Res., 2011, 19(1): 8-13
[39] Dimitriou M D, Zhou Z, Yoo H S, et al. A general approach to controlling the surface composition of poly (ethylene oxide)-based block copolymers for antifouling coatings[J]. Langmuir, 2011, 27(22): 13762-13772
[40] Wang Y, Pitet L M, Finlay J A, et al. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly (ethylene glycol) networks: towards high-performance antifouling coatings[J]. Biofouling, 2011, 27(10): 1139-1150
[41] Gao H. Study on fluorocarbon low surface energy antifouling coatings [D]. Dalian Maritime University, 2010
(高慧. 氟硅表面防污涂料研究 [D]. 大连海事大学, 2010)
[42] Martinelli E, Suffredini M, Galli G, et al. Amphiphilic block copolymer/poly (dimethylsiloxane)(PDMS) blends and nanocomposites for improved fouling-release[J]. Biofouling, 2011, 27(5): 529-541
[43] Chen M L, Ding F, Xu L M, et al. Low surface energy antifouling coatings based on nano- SiO2/fluorine-silicon modified acrylic resin[J]. Paint Coat. Ind., 2010, 40(5): 11-15
(陈美玲, 丁凡, 许丽敏等. 纳米SiO2/氟改性丙烯酸树脂低表面能防污涂料[J]. 涂料工业, 2010, 40(5): 11-15)
[44] Magin C M, Cooper S P, Brennan A B. Non-toxic antifouling strategies[J]. Mater. Today, 2010, 13(4): 36-44
[45] Meyer W, Seegers U. A preliminary approach to epidermal antimicrobial defense in the Delphinidae[J]. Mar. Biol., 2004, 144(5): 841-844
[46] Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir, 2005, 21(3): 956-961
[47] Wang J M, Wang K, Zheng Y M, et al. Effects of chemical composition and nano-structures on the wetting behaviour of lotus leaves[J]. Chem. J. Chin. Univ., 2012, 31(8): 1596-1599
(王景明, 王轲, 郑咏梅等. 荷叶表面纳米结构与浸润性的关系[J].高等学校化学学报, 2012, 31(8): 1596-1599)
[48] Liu K S, Jiang L. Bio-inspired self-cleaning surfaces[J]. Annu. Rev. Mater. Res., 2012, 42: 231-263
[49] Zhang S Y, Zhen J Y, Fu Y B. Principle and research progress of surface flocking as marine antifouling technology[J]. Paint Coat. Ind., 2012, 42(12): 72-76
(张淑玉, 郑纪勇, 付玉彬. 表面植绒防污技术的原理及研究进展[J]. 涂料工业, 2012, 42(12): 72-76)
[50] Du S G. The study and development of conductive coatings[J]. Paint Coat. Ind., 1995, (6): 29-31
(杜仕国. 导电涂料的研究及进展[J]. 涂料工业, 1995, (6): 29-31)
[51] Huang W S, Humphrey B D, MacDiarmid A G. Polyaniline, a novel conducting polymer. morphology and chemistry of its oxidation and reduction in aqueous electrolytes[J]. J. Chem. Soc. Faraday Trans. I, 1986, 82(8): 2385-2400
[52] Diaz A F, Castillo J I, Logan J A, et al. Electrochemistry of conducting polypyrrole films[J]. J. Electroanal. Chem. Interf. Electrochem., 1981, 129(1): 115-132
[53] Wattman R T, Bargon J, Diaz A F. Electrochemical studies of some conducting polythiophene films[J]. Phys. Chem., 1983, 87(8): 1459-1463
[54] Tunney S E, Suenaga J, Stille J K. Conducting polyquinolines[J]. Macromolecules, 1983, 16(8): 1398-1399
[55] Azim S S, Satheesh A, Ramu K K, et al. Studies on graphite based conductive paint coatings[J]. Prog. Org. Coat., 2006, 55(1): 1-4
[56] Xia H, Wang Q. Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites[J]. Chem. Mater., 2002, 14(5): 2158-2165
[57] Coleman J N, Curran S, Dalton A B, et al. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite[J]. Phys. Rev., 1998, 58(12)B: R7492-R7495
[58] Hong S L,Feng H B. Coatings Chemistry[M]. Beijing: Science Press, 2005: 348
(洪啸吟,冯汉保. 涂料化学[M]. 北京: 科学出版社, 2005: 348)
[59] Wang X H, Li J, Zhang J Y, et al. Polyaniline as marine antifouling and corrosion-prevention agent[J]. Synth. Met., 1999, 102(1): 1377-1380
[60] Wang H J, Wang D, Jiang Q Y, et al. Preparation of water-borne non-toxicity silicate antifouling coatings[J]. China Paint, 2012, 27(5): 39-42
(王华进, 王丹, 姜清雅等. 水性无毒硅酸盐防污涂料的研制[J].中国涂料, 2012, 27(5): 39-42)
[1] ZHENG Jiyong. INFLUENCE OF MARINE BIOFOULING ON CORROSION BEHAVIOUR[J]. 中国腐蚀与防护学报, 2010, 30(2): 171-176.
No Suggested Reading articles found!