Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (2): 112-118    DOI: 10.11902/1005.4537.2013.220
Original Article Current Issue | Archive | Adv Search |
Effect of SRB on Corrosion Behavior of X70 Steel in a Simulated Soil Solution
LIU Tong, ZHANG Yanfei, CHEN Xu, WANG Dan, CHEN Yu, WANG Guangfu
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(3513KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behavior of X70 steel was studied in a simulated soil solution with and without sulfate-reducing bacteria (SRB) by means of weight-loss measurement, SEM-EDS analysis and electrochemical impedance spectroscopy (EIS). The results showed that the corrosion rate increased with time in the solution without SRB, while the corrosion product film was loose and non-protective. In the solution with SRB, however, a compact and homogeneous biofilm formed on the steel surface, which could suppress the mass transfer so that to mitigate the steel corrosion, whilst the corrosion product film became loose and apt to spall because of the increasing amount of absorbed substance and sulfide in the corrosion product with time, in consequence the corrosion of the steel substrate was further promoted. The stability of the inner portion of the corrosion product film was related to the distribution of deposits on the steel in the solution without SRB. The porous extracellular polymeric substances (EPS) formed on the steel in the solution with SRB played a role in barrier action to the mass transfer during the activated process.
Key words:  X70 steel      corrosive anion      SRB      biofilm      corrosion behavior     
ZTFLH:  TG174  

Cite this article: 

LIU Tong, ZHANG Yanfei, CHEN Xu, WANG Dan, CHEN Yu, WANG Guangfu. Effect of SRB on Corrosion Behavior of X70 Steel in a Simulated Soil Solution. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 112-118.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.220     OR     https://www.jcscp.org/EN/Y2014/V34/I2/112

[1] Gerard M, Alfons J M S. The ecology and biotechnology of sulphate reducing bacteria [J]. Nat. Rev. Microbiol., 2008, 6(6): 441-454
[2] Wan Y, Zhang D, Liu H Q, et al. Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions [J]. Electrochim. Acta, 2010, 55(5): 1528-1534
[3] Videla H A, Mele M F L, Brankevich G. Assessment of corrosion and microfouling of several metals in polluted seawater [J]. Corros. Sci., 1988, 44(7): 423-426
[4] Souad B, Mohamed A L, Samir H. Effect of biofilm on naval steel corrosion in natural seawater [J]. J. Solid State Electrochem., 2011, 15(3): 525-537
[5] Beech I B, Zinkevitch V, Tapper R, et al. Study of the interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry [J]. J. Microbiol. Methods., 1999, 36(1/2): 3-10
[6] Fan Y J, Pi Z B, Hua P, et al. Microbial corrosion and its research methods [J]. J. Mater. Prot., 2001, 34(5): 28-30
(樊友军, 皮振邦, 华萍等. 微生物腐蚀的作用机制与研究方法现状 [J]. 材料保护, 2001, 34(5): 28-30)
[7] Florian M. The interaction of bacteria and metal surfaces [J]. Electrochim. Acta, 2007, 52(27): 7670-7680
[8] Duan J, Wu S, Zhang X, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54: 22-28
[9] Beech I B. Sulfate-reducing bacteria in biofilms on metallic materials and corrosion [J]. Microbiol. Today, 2003, 30: 115-117
[10] Sosa E, Garcia-Arriaga V, Castaneda H. Effect of biofilm on naval steel corrosion in natural seawater [J]. Electrochim. Acta, 2006, 51: 1855-1863
[11] Liu H F, Xu L M, Zheng J S. Effect of biofilm on corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2000, 20(1): 41-46
(刘宏芳, 许立铭, 郑家燊. SRB生物膜与碳钢腐蚀的关系 [J]. 中国腐蚀与防护学报, 2000, 20(1): 41-46)
[12] Zhao Y L, Liu W, Lu M X. Effect of soaking time on SRB electrochemical corrosion behavior of X60 Steel [J]. Equip. Environ. Eng., 2007, 4(3): 53-57
(赵艳亮, 柳伟, 路民旭. 浸泡时间对X60钢SRB电化学腐蚀行为影响研究 [J]. 装备环境工程, 2007, 4(3): 53-57)
[13] Homero C, Xochitl D B. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50(4): 1169-1183
[14] Jones D A, Amy P S. A thermodynamic interpretation of microbiologically influenced corrosion [J]. Corros. Sci., 2002, 58(8): 638-645
[15] Ornek D, Wood T K, Hsu C H, et al. Corrosion control using regenerative biofilms (CCURB) on brass in different media [J]. Corros. Sci., 2002, 44(10): 2291-2302
[16] Souad B, Mohamed A L, Samir H. Effect of biofilm on naval steel corrosion in natural seawater [J]. J. Solid. State. Electr., 2011, 15(3): 525-537
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[4] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[5] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[7] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[9] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[10] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[11] CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu. Interaction between Friction-wear and Corrosion in Special Environment[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[12] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[13] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[14] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[15] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
No Suggested Reading articles found!