Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (3): 287-293    DOI: 10.11902/1005.4537.2013.150
Current Issue | Archive | Adv Search |
Atmospheric Corrosion Behavior of Pre-strained Aluminum Alloys LY12 and LC4 in Salt Lake Environment in Western China
WANG Binbin, WANG Zhenyao(), CAO Gongwang, ZHONG Xizhou, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(5858KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Atmospheric corrosion behavior of U-bended aluminum alloy plates of LY12 and LC4 with/without Al cladding was investigated by field exposure in salt lake environment in Western China for 2 a. Then their surface and cross-sectional morphology was examined by metalloscope and SEM. The results showed that the corrosion behavior of the Al clad alloys LY12 and LC4 was mainly pitting corrosion within the cladding and no pits penertrating the cladding could be observed after 2 a exposure. For the bare alloys LY12 and LC4, severe stress corrosion cracking (SCC) was observed in the test. Both tensile- and compressive-stress could lead to SCC in for LY12, while only tensile stress could induce SCC for LC4 during the exposure. Exfoliation corrosion (EFC) of LY12 and LC4 occurred under compressive stress but not under tensile stress.

Key words:  LY12 alloy      LC4 alloy      salt-lake atmospheric environment      SCC      EFC     
Received:  29 October 2013     
ZTFLH:  TG174  

Cite this article: 

WANG Binbin, WANG Zhenyao, CAO Gongwang, ZHONG Xizhou, KE Wei. Atmospheric Corrosion Behavior of Pre-strained Aluminum Alloys LY12 and LC4 in Salt Lake Environment in Western China. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 287-293.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.150     OR     https://www.jcscp.org/EN/Y2014/V34/I3/287

Material Fe Si Cu Mn Zn Mg Al
LY12
0.50
0.50
4.18
0.30
0.30
1.30~1.80
Bal.
LC4 0.50 0.50 1.30 0.40 5.59 2.49 Bal.
Table 1  Chemical compositions of LY12 and LC4 alloy (mass fraction / %)
Fig.1  

暴露2 a后包铝的LY12铝合金朝地面的表面形貌

Fig.2  

暴露2 a后包铝的LY12铝合金的截面形貌

Fig.3  

无包铝的LY12铝合金暴露不同时间的截面处应力腐蚀裂纹

Fig.4  

LY12大气暴露2 a并蚀刻后的应力腐蚀裂纹形貌

Fig.5  

无包铝LC4铝合金大气暴露2 a的截面处应力腐蚀裂纹和蚀刻后形貌

Fig.6  

大气暴露1 a的LC4铝合金断口处的微观形貌

Fig.7  

无包铝的LY12和LC4铝合金大气暴露2 a后的剥层腐蚀形貌

[1] Liu J A,Xie S S. Application and Development of Aluminium Alloy[M]. Beijing: Metallurgical Industry Press, 2011: 71-74
(刘静安,谢水生. 铝合金材料应用与开发[M]. 北京: 冶金工业出版社, 2011: 71-74)
[2] Vargel C. Corrosion of Aluminium [M]. Paris: Dunod, 2004: 235-289
[3] Ailor W H. Atmospheric Corrosion [M]. New York: John Wiley and Sons, 1982: 353-364
[4] Lee T S. Degradation of metals in atmosphere, STP 965 [M]. Philadelphia: American Society of Testing and Materials, 1988: 191-205
[5] Cao C N. Material Natural Environmental Corrosion of China[M]. Beijing: Chemical Industry Press, 2005: 108-122
(曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005: 108-122)
[6] Sun S Q, Zheng Q F, Li D F, et al. Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments[J]. Corros. Sci., 2009, 51: 719-727
[7] Sun S Q, Zheng Q F, Li D F, et al. Exfoliation corrosion of extruded 2024-T4 in the coastal environments in China[J]. Corros. Sci., 2011, 53: 2527-2538
[8] Cheng Y L, Zhang Z, Cao F H, et al. A study of the corrosion of aluminium alloy 2024-T3 under thin electrolyte layers[J]. Corros. Sci., 2004, 46: 1649-1667
[9] Shi Y Y, Zhang Z, Su J X, et al. Electrochemical noise study on 2024-T3 Aluminium alloy corrosion in simulated acid rain under cyclic wet-dry condition[J]. Electrochim. Acta, 2006, 51: 4977–4986
[10] Wang Z Y, Ma T, Han W, et al. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process[J]. Chin. J. Nonferrous Met., 2007, 17: 326-334
[11] Wang Z Y, Ma T, Han W, et al. Corrosion behaviors of Al alloy LC4 in simulated polluted atmospheric environments[J]. J. Chin. Soc. Corros. Prot., 2005, 25(6): 321-326
(王振尧, 马腾, 韩薇等. LC4铝合金在模拟污染大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2005, 25(6): 321-326)
[12] Han W, Wang Z Y, Yu G C. Atmospheric corrosion behavior of two high strength aluminum alloys with aluminum overlayer under strain[J]. Corros. Sci. Prot. Technol., 2003, 15(5): 254-258
(韩薇, 王振尧, 于国才. 两种包铝的高强铝合金受力状态下的大气腐蚀行为[J]. 腐蚀科学与防护技术, 2003, 15(5): 254-258)
[13] An B G, Zhang X Y, Song S Z, et al. A study of electrochemical impedance spectrum for corrosion behavior of LY12 aluminum alloy in simulated acid rain[J]. J. Chin. Soc. Corros. Prot., 2003, 23(3): 167-170
(安百刚, 张学元, 宋诗哲等. LY12铝合金在模拟酸雨溶液中的阻抗谱研究[J]. 中国腐蚀与防护学报, 2003, 23(3): 167-170)
[14] Cai J P, Liu M, Luo Z H, et al. Study on accelerated tests for aluminum alloy atmospheric corrosion[J]. J. Chin. Soc. Corros. Prot., 2005, 25(5): 262-266
(蔡健平, 刘明, 罗振华等. 航空铝合金大气腐蚀加速试验研究[J]. 中国腐蚀与防护学报, 2005, 25(5): 262-266)
[15] Sun S Q, Zhao Y B, Zheng Q F, et al. Evolution mechanism of pitting of Al clad 7075 and 2024 aluminum alloy in coastal environment[J]. J. Chin. Soc. Corros. Prot., 2012, 32(3): 195-202
(孙霜青, 赵予兵, 郑弃非等. 包铝的7075和2024合金在海洋大气环境中点蚀演化机制[J]. 中国腐蚀与防护学报, 2012, 32(3): 195-202)
[16] Zhang X Y, Sun Z H, Liu M H, et al. Influence of different enviroments on stress corrosion cracking of high strength aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2007, 27(6): 354-362
(张晓云, 孙志华, 刘明辉等. 环境对高强度铝合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2007, 27(6): 354-362)
[17] Zheng X Y,Zhang M G,Xu C,et al. Saline Mark of China[M]. Beijing: Science Technology Press, 2002: 1-43
(郑喜玉,张明刚,徐昶等. 中国盐湖志[M]. 北京: 科学技术出版社, 2002: 1-43)
[18] Wang Z Q. Pickled Soil of China[M]. Beijing: Science Technology Press, 1993: 251-310
(王遵亲. 中国盐渍土[M]. 北京: 科学技术出版社, 1993: 251-310)
[19] He M S, He S L, Ji X C. GB/T15970.3-1995. Corrosion of metals and alloys-Stress corrosion testing- Part3: Preparation and use of U bend specimens
(何明山, 何叔麟, 纪晓春. GB/T15970.3-1995. 《金属和合金的腐蚀 应力腐蚀试验 第3部分: U型弯曲试样的制备和应用》)
[20] Wang B B, Wang Z Y, Han W, et al. Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in western China[J]. Corros. Sci., 2012, 59: 63-70
[21] Xiao J M,Cao C N. Material Corrosion Theory[M]. Beijing: Chemical Industry Press, 2002: 69-84
(肖纪美,曹楚南. 材料腐蚀学原理[M]. 北京: 化学工业出版社, 2002: 69-84)
[22] Meng F J. Influence of shaving on stress corrosion behavior of 690 TT alloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011
(孟凡江. 划伤对690TT合金腐蚀和应力腐蚀行为的影响 [D]. 沈阳: 中国科学院金属研究所, 2011)
[23] Huang C L, Wan X P. Effect of axial stress on exfoliation corrosion of keel beam for aircraft B737CL[J]. Corros. Sci. Prot. Technol., 2011, 23(5): 440-444
(黄昌龙, 万小朋. 正应力在波音737CL飞机龙骨梁剥蚀中的作用[J]. 腐蚀科学与防护技术, 2011, 23(5): 440-444)
[24] Wang B B, Wang Z Y, Han W, et al. Effects of magnesium chloride-based multi-component salts on atmospheric corrosion of aluminum alloy 2024[J]. Chin. J. Nonferrous Met., 2013, 23: 1199-1208
[25] Ge Z Z, Wexler A S, Johnston M V. Deliquescence behaviour of multicomponent aerosols[J]. J. Phys. Chem., 1998, 102: 173-180
[26] Nenes A, Pandis S N, Pilinis C. A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols[J]. Aquat. Geochem., 1998, 4: 123-152
[27] Xiao H S, Dong J L, Wang L Y, et al. Spatially resolved micro-raman observation on the phase separation of effloresced sea salt droplets[J]. Environ. Sci. Technol., 2008, 42: 8698-8702
[28] Wise M E, Biskos G, Martin S T, et al. Phase transitions of single salt particles studied using a transmission electron microscope with an environmental cell[J]. Aerosol. Sci. Technol., 2005, 39: 8849-856
[29] Prosek T, Lversen A, Taxén C, et al. Low-temperature stress corrosion cracking of stainless steels on the atmosphere in the presence of chloride deposits[J]. Corrosion, 2009, 65: 105-117
[1] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[2] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[3] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE. Review of Irradiation Assisted Stress Corrosion Cracking of Core Structural Materials[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[4] MENG Fanjiang,WANG Jianqiu,HAN En-Hou,KE Wei. Stress Corrosion Crack Initiation for Scratched Alloy 690TT in Oxygenated High Temperature Water[J]. 中国腐蚀与防护学报, 2013, 33(5): 413-418.
[5] ZHANG Zhiming, WANG Jianqiu,HAN En-Hou, KE Wei. EFFECTS OF SURFACE CONDITION ON CORROSION AND STRESS CORROSION CRACKING OF ALLOY 690TT[J]. 中国腐蚀与防护学报, 2011, 31(6): 441-445.
[6] HUANG Changlong, WAN Xiaopeng, ZHAO Meiying, XU Hairong. EFFECTS OF AXIAL STRESS ON EXFOLIATION CORROSION OF 7150 ALLOY[J]. 中国腐蚀与防护学报, 2011, 31(2): 135-138.
[7] HU Yisong, WANG Jianqiu, KE Wei, HAN En-hou. CORROSION BEHAVIOR OF ALLOY 690TT IN HIGH TEMPERATURE LEAD-CONTAINING CAUSTIC SOLUTION[J]. 中国腐蚀与防护学报, 2010, 30(6): 427-432.
[8] YU Yuanfang, WANG Hui, HU Shilin. SOME CORROSION PROBLEMS OF ALLOY 690TT IN SPECIAL ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2010, 30(3): 251-256.
[9] . THE EFFECT OF MECHANICAL FACTORS ON SCC INITIATION OF PIPELINE STEEL[J]. 中国腐蚀与防护学报, 2008, 28(5): 282-286 .
[10] . Investigation of sulfide stress corrosion cracking for X70 pipeline steel[J]. 中国腐蚀与防护学报, 2008, 28(2): 86-89 .
[11] . The Influence of Different Enviroments on Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2007, 27(6): 354-362 .
[12] . Study on Stress Corrosion Crack of 16Mn Steel in Wet Sulfureted[J]. 中国腐蚀与防护学报, 2006, 26(6): 360-365 .
[13] Weiwei Peng. PREVENTION OF STRESS CORROSION CRACKING IN WELD JOINT OF TYPE 304 STAINLESS STEEL BY GLASS-BEAD PEENING[J]. 中国腐蚀与防护学报, 2005, 25(3): 152-156 .
[14] Hongxia Gao. The Appraisal on SCC Susceptibility of Aluminized 304 Stainless Steel by Different Test Means[J]. 中国腐蚀与防护学报, 2004, 24(5): 289-292 .
[15] Chunbo Huang; Zhanpeng Lv; Wu Yang. AES ANALYSIS OF THE SURFACE FILMS FORMED ON ALLOY800M IN HOT CONCENTRATED CAUSTIC SOLUTION[J]. 中国腐蚀与防护学报, 2003, 23(5): 266-270 .
No Suggested Reading articles found!