Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 247-263    DOI: 10.11902/1005.4537.2016.035
  本期目录 | 过刊浏览 |
改性环氧防腐涂层在模拟深海高压环境的失效行为
高洪扬,王巍,许立坤(),马力,叶章基,李相波
中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护国家重点实验室 青岛 266101
Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment
Hongyang GAO,Wei WANG,Likun XU(),Li MA,Zhangji YE,Xiangbo LI
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute,Qingdao 266101, China
全文: PDF(3774 KB)   HTML
摘要: 

采用海水压力罐模拟深海高压环境,利用电化学阻抗谱 (EIS)、三维视频显微镜和扫描电子显微镜 (SEM) 等手段,对比研究了改性环氧防腐涂层在常压海水环境和模拟深海高压环境 (6 MPa海水压力) 下的失效行为。结果表明,试样在深海高压环境下浸泡30 d后,涂层阻抗已降低到105 Ωcm2;而常压环境下,涂层阻抗仅降低到108 Ωcm2,深海高压环境促使涂层更快地吸水达到饱和状态,高压环境导致涂层下的金属腐蚀活性面积不断增大,基体金属腐蚀速率不断增加。SEM观察表明,高压导致环氧防腐涂层中的颜填料发生脱附,使涂层/金属基体界面弱化,腐蚀活性表面积增大,从而导致涂层破损和基体腐蚀。

关键词 深海高压环境改性环氧涂层电化学阻抗谱涂层失效    
Abstract

The degradation behavior of a modified epoxy resin coating was comparatively studied in sea water at atmospheric pressure and in a simulated deep-sea environment with high hydrostatic pressure of 6 MPa by means of electrochemical impedance spectroscopy (EIS), 3D optical microscope and scanning electron microscope (SEM). The results showed that the resistance of the coating decreased to 105 Ωcm2 after 30 d immersion under high hydrostatic pressure, while that decreased to 108 Ωcm2 at atmospheric pressure. The deep-sea environment can induce the enlargement of the active area and shorten the water-saturation process of coatings, therewith, the corrosion rate of the substrate was instantly accelerated. SEM showed that the hydrostatic pressure can deteriorate the attachment of pigments with the epoxy and weaken the adhesion between the epoxy coatings and the metal substrate. In this case, the active area of corrosion was enlarged, whilst the degradation of coatings and the corrosion of the steel substrate simultaneously occurred.

Key wordsdeep sea environment with high pressure    modified epoxy coating    electrochemical impedance spectroscopy    coating degradation
收稿日期: 2016-03-19     
基金资助:国家自然科学基金 (51401185)

引用本文:

高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
Hongyang GAO, Wei WANG, Likun XU, Li MA, Zhangji YE, Xiangbo LI. Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 247-263.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.035      或      https://www.jcscp.org/CN/Y2017/V37/I3/247

图1  常压海水环境下浸泡不同时间后改性环氧涂层的EIS谱 (散点为测量数据,实线为拟合结果)
图2  等效电路Rs(CcRc) 示意图
图3  模拟深海高压海水环境下不同浸泡时间后改性环氧涂层的EIS谱 (散点为测量数据,实线为拟合结果)
图4  等效电路Rs(QcRc) 和Rs(Qc(Rc(QdlRct))) 示意图
图5  常压海水环境和高压海水环境下涂层在0.01 Hz时的阻抗随浸泡时间的变化
图6  常压和高压海水环境中改性环氧涂层的电容和电阻随浸泡时间的变化
图7  模拟深海高压海水环境中浸泡9 d后涂层的Qdl和Rct随时间的变化
图8  改性环氧涂层在常压和高压海水环境条件下吸水率随浸泡时间的变化
图9  改性环氧涂层在两种模拟海水环境浸泡前的表面形貌
图10  改性环氧涂层在两种模拟环境中浸泡30 d后的形貌
图11  常压和高压海水环境条件下浸泡实验结束后涂层拉脱处的SEM像
[1] Hou J, Guo W M, Deng C L.Influences of deep sea environmental factors on corrosion behavior of carbon steel[J]. Equip. Environ. Eng., 2008, 5(6): 82
[1] (侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响[J]. 装备环境工程, 2008, 5(6): 82)
[2] Traverso P, Canepa E.A review of studies on corrosion of metals and alloys in deep-sea environment[J]. Ocean Eng., 2014, 87: 10
[3] Sun H J, Liu L, Li Y, et al.Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel[J]. J. Electrochem. Soc., 2013, 160: C89
[4] Raja K S, Jones D A.Effects of dissolved oxygen on passive behavior of stainless alloys[J]. Corros. Sci., 2006, 48: 1623
[5] Zhang T, Yang Y, Shao Y W, et al.A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy[J]. Electrochim. Acta, 2009, 54: 3915
[6] Wan H X, Du C W, Liu Z Y, et al.The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment[J]. Ocean Eng., 2016, 114: 216
[7] Peng W C, Hou J, Guo W M.Research progress on the corrosion of aluminum alloy in deep ocean[J]. Dev. Appl. Mater., 2010, 25(1): 59
[7] (彭文才, 侯健, 郭为民. 铝合金深海腐蚀研究进展[J]. 材料开发与应用, 2010, 25(1): 59)
[8] Sawant S S, Wagh A B.Corrosion behaviour of metals and alloys in the waters of the Arabian Sea[J]. Corros. Prev. Control, 1990, 36: 154
[9] Venkatesan R, Venkatasamy M A, Bhaskaran T A, et al.Corrosion of ferrous alloys in deep sea environments[J]. Br. Corros. J., 2002, 37: 257
[10] Zhang X H, Fang D Q, Gao B, et al.Development of epoxy glass flakes coatings for off-shore steel structures[J]. Dev. Appl. Mater., 2015, 30(1): 15
[10] (张贤慧, 方大庆, 高波等. 海洋钢结构用环氧玻璃鳞片涂料的开发[J]. 材料开发与应用, 2015, 30(1): 15)
[11] Liu L, Cui Y, Li Y, et al.Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure[J]. Electrochim. Acta, 2012, 62: 42
[12] Liu B, Li Y, Lin H C, et al.Progress in study on degradation of anti-corrosion coatings[J]. Corros. Sci. Prot. Technol., 2001, 13: 305
[12] (刘斌, 李瑛, 林海潮等. 防腐蚀涂层失效行为研究进展[J]. 腐蚀科学与防护技术, 2001, 13: 305)
[13] S?rensen P A, Kiil S, Dam-Johansen K, et al.Anticorrosive coatings: A review[J]. J. Coat. Technol. Res., 2009, 6: 135
[14] Van Westing E P M, Ferrari G M, Geenen F M, et al. In situ determination of the loss of adhesion of barrier epoxy coatings using electrochemical impedance spectroscopy[J]. Prog. Org. Coat., 1993, 23: 89
[15] Guo W M, Li W J, Chen G Z.Corrosion testing in the deep ocean[J]. Equip. Environ. Eng., 2006, 3(1): 10
[15] (郭为民, 李文军, 陈光章. 材料深海环境腐蚀试验[J]. 装备环境工程, 2006, 3(1): 10)
[16] See S C, Zhang Z Y, Richardson M O W. A study of water absorption characteristics of a novel nano-gelcoat for marine application[J]. Prog. Org. Coat., 2009, 65: 169
[17] Czarnecki L, Garbacz A, Krystosiak M.On the ultrasonic assessment of adhesion between polymer coating and concrete substrate[J]. Cem. Concr. Compos., 2006, 28: 360
[18] Zhang J Q, Cao C N.Study and evaluation on organic coatings by electrochemical impedance spectroscopy[J]. Corros. Prot., 1998, 19: 99
[18] (张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层[J]. 腐蚀与防护, 1998, 19: 99)
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[3] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[7] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[8] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[9] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[10] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[12] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[13] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[14] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.