Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (1): 59-64    DOI: 10.11902/1005.4537.2013.050
  本期目录 | 过刊浏览 |
16MnR钢在催化裂化再生环境中的应力腐蚀开裂研究
邢云颖, 刘智勇(), 董超芳, 李晓刚
北京科技大学腐蚀与防护中心 北京 100083
Stress Corrosion Cracking of 16MnR Steel in FCCU Regeneration Environments
XING Yunying, LIU Zhiyong(), DONG Chaofang, LI Xiaogang
Corrosion and Protection Center University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3250 KB)   HTML
摘要: 

通过U形试样应力腐蚀实验、电化学极化曲线等方法,在模拟催化裂化再生器环境条件下,研究了HNO3-H2SO4-H2O体系中16MnR钢及其焊缝的应力腐蚀行为。结果表明:16MnR钢焊接接头在不同实验条件下均比基材更易产生硝酸盐应力腐蚀开裂,其机理主要是阳极溶解;引入硫酸根和降低pH值均能破坏16MnR钢的保护膜,增大其焊接接头的应力腐蚀敏感性;当溶液的pH值降低至2以下时,材料处于活化状态,发生严重的均匀腐蚀。

关键词 催化裂化露点16MnR钢焊缝应力腐蚀    
Abstract

The stress corrosion behavior of the weld seam and base metal of 16MnR steel in solution of HNO3-H2SO4-H2O, one of the typical environments of FCCU regenerator, was investigated using U-bend specimen immersion test and electrochemical polarization curves. The results show that the weld seam of 16MnR is more sensitive to nitrate stress corrosion cracking than base metal, its mechanism is anodic dissolution. Both the introduction of sulfate and the slightly reduction of pH can destroy the protective film on 16MnR steel, and increase the corrosion susceptibility of its weld seam. However, when the pH of solution is less than 2, the material is in active state, resulting in a serious of uniform corrosion. Besides the effective methods to slow down the stress corrosion of materials in catalytic cracking regenerator are analyzed in this article.

Key wordscatalytic cracking    dew-point    16MnR    weld seam    stress corrosion
收稿日期: 2013-06-06     
ZTFLH:  TG172.6  
基金资助:国家科技支撑计划项目 (2011BAK06B01-01-02);中央高校基本科研业务费专项资金项目 (FRF-TP-12-148A) 资助

引用本文:

邢云颖, 刘智勇, 董超芳, 李晓刚. 16MnR钢在催化裂化再生环境中的应力腐蚀开裂研究[J]. 中国腐蚀与防护学报, 2014, 34(1): 59-64.
Yunying XING, Zhiyong LIU, Chaofang DONG, Xiaogang LI. Stress Corrosion Cracking of 16MnR Steel in FCCU Regeneration Environments. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 59-64.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.050      或      https://www.jcscp.org/CN/Y2014/V34/I1/59

Material C Mn Si S P
Base 0.150 1.46 0.35 0.0097 0.014
Weld 0.071 1.24 0.39 0.0070 0.009
  
图1  16MnR钢焊接接头组织形貌
图2  催化裂化再生环境下应力腐蚀模拟实验装置
图3  腐蚀后试样的宏观形貌和发生的应力腐蚀裂纹形貌
图4  试样表面应力腐蚀裂纹微观形貌
Temperature
oC
NO2 and SO3 Cracking time / h
flow (volume) Sample 1 Sample 2 Sample 3
ratio Weld Base Weld Base Weld Base
70 100∶0 76 No cracking 68 No cracking 80 None
100∶1 44 No cracking 76 No cracking 76 None
100∶2 44 No cracking 48 No cracking 76 None
100∶5 60 No cracking No cracking No cracking No cracking None
90 100∶0 --- --- --- --- --- ---
100∶1 44 No cracking 44 No cracking 48 None
100∶2 336(1) No cracking No cracking No cracking No cracking None
100∶5 336(1) No cracking No cracking No cracking No cracking None
  
图5  70 ℃下于不同浓度溶液中16MnR钢基体和焊接接头的极化曲线
图6  温度对16MnR钢焊接接头在10%NH4NO3溶液中极化行为的影响
[1] Fu C H, Si Y X. Analysis of root causes of equipment cracking in FCCU regenerator system and counter measures[J]. Corros. Prot. Petrochem. Ind., 2010, 27(6): 31-64
[1] (付春辉, 司元祥. 催化裂化装置再生系统应力腐蚀开裂原因[J]. 石油化工腐蚀与防护, 2010, 27(6): 31-64)
[2] Parkins R N. Mechanical aspect of stress corrosion cracking of carbon steels in petroleum refining industry [A]. Proceeding of International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys [C]. Houston: NACE, 1977: 526-533
[3] Gu Y Z. Prevention of stress corrosion cracking (SCC) of equipment in FCCU regeneration system[J]. Corros. Prot. Petrochem. Ind., 2010, 27(5): 17-19
[3] (顾月章. 催化裂化再生系统应力腐蚀开裂的预防[J]. 石油化工腐蚀与防护, 2010, 27(5): 17-19)
[4] Galvele J R. Recent developments in the surface-mobility stress-corrosion-cracking mechanism[J]. Electrochim. Acta, 2000, 45(21): 3537-3541
[5] Pollard R E. Symposium stress corrosion cracking of metals[J]. ASTM, 1944: 443-450
[6] Zhang L, Li X G, Du C W, et al. Progress in study of factors affecting stress corrosion cracking of pipeline steels[J]. Corros. Sci. Prot. Technol., 2009, 21(1): 63-65
[6] (张亮, 李晓刚, 杜翠薇等. 管线钢应力腐蚀影响因素的研究进展[J]. 腐蚀科学与防护技术, 2009, 21(1): 63-65)
[7] Wu Y S. SCC diagram for low alloy steel-nitrate aqueous solution system[J]. J. Univ. Sci. Technol. Beijing, 1990, 12(2): 131-136
[7] (吴荫顺. 低合金钢-硝酸盐溶液体系SCC图[J]. 北京科技大学学报, 1990, 12(2): 131-136)
[8] Parkins R N. Mechanism and characteristic of stress corrosion cracking[A]. Proceeding of International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys [C]. Houston: NACE, 1977: 531-542
[9] Du A H, Long J M, Pei Z H, et al. Investigation of stress corrosion cracking of 7xxx series aluminum alloys[J]. J. Chin. Soc. Corros. Prot., 2008, 28(4): 251-256
[9] (杜爱华, 龙晋明, 裴中和等. 高强铝合金应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2008, 28(4): 251-256)
[10] Rossenhain G D, Lockington N A. Research of stress corrosion cracking[J]. Corrosion, 1990, 5: 167-169
[11] Meng Q, Yan H, Huang W, et al. Corrosion and protection of catalytic cracking unit[J]. Fine Chem. Intermed., 2011, 41(1): 8-10
[11] (孟邱, 闫慧, 黄炜等. 催化裂化装置的腐蚀与防护[J]. 精细化工中间体, 2011, 41(1): 8-10)
[12] Li X G, Chen H, Dong C F. Thermal healing of hydrogen attacked cracks in steels [A]. The 2nd China International Corrosion Control Conference [C]. Beijing, 2002: 41-49
[13] Zhou Z H. Deterrents to long-period operation of catalytic cracking units and solution[J]. Sino-Global. Energy, 2012, 17(6): 73-77
[13] (周志航. 催化裂化装置长周期运行的问题及对策[J]. 中外能源, 2012, 17(6): 73-77)
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[5] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] 刘志峰,朱志平,石纯,黄赵鑫. 载流法制备硫酸露点腐蚀模拟气体的试验研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 1-9.
[9] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[10] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[11] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[12] 孔祥峰, 张婧, 姜源庆, 褚东志, 李春虎, 高楠, 吕婧, 邹妍. 基于失重法的水下焊接接头腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 226-232.
[13] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[14] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[15] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.