Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (2): 85-89    
  综合评述 本期目录 | 过刊浏览 |
IrO2复合涂层电极的研究进展
汪广进,潘牧
武汉理工大学材料复合新技术国家重点实验室 湖北省燃料电池重点实验室 武汉 430070
RESEARCH PROGRESS OF IRIDIUM OXIDE COMPOSITES ELECTRODES
WANG Guangjin, PAN Mu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Hubei Provincial Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070
全文: PDF(412 KB)  
摘要: IrO2复合物具有优良的耐腐蚀、抗氧化特性和电化学特性,被应用于析氧催化与氧还原催化领域。本文综述了近几年来IrO2复合涂层电极的研究进展,主要包括IrO2晶体结构特点、IrO2复合涂层电极制备方法以及复合涂层电极在析氧催化与氧还原催化领域的相关研究。
关键词 IrO2复合物晶体结构制备方法催化应用    
Abstract:Iridium oxide composites are widely used in the oxygen evolution reaction and oxygen reduction reaction catalysis fields because of their excellent anti corrosion, oxidation-resistant and superior electrochemistry performances. In this paper, the crystal structure of iridium oxide, the preparation methods for its composites and the relative research progress in oxygen evolution reaction and oxygen reduction reaction catalysis fields in recent years were reviewed.
Key wordsiridium oxide composites    crystal structure    preparation method    catalysis application
收稿日期: 2011-03-14     
ZTFLH: 

O643

 
基金资助:

国家高技术研究发展计划项目(2008AA11A106)资助

通讯作者: 潘牧     E-mail: panmu@whut.edu.cn
Corresponding author: PAN Mu     E-mail: panmu@whut.edu.cn
作者简介: 汪广进,男,1985年生,硕士生,研究方向为新能源材料

引用本文:

汪广进,潘牧. IrO2复合涂层电极的研究进展[J]. 中国腐蚀与防护学报, 2012, 32(2): 85-89.
WANG An-Jin, PAN Mu. RESEARCH PROGRESS OF IRIDIUM OXIDE COMPOSITES ELECTRODES. J Chin Soc Corr Pro, 2012, 32(2): 85-89.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I2/85

[1] Kim K W, Kim Y J, Kim I T, et al. The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode [J]. Electrochim. Acta, 2005, 50(22): 4356-4364

[2] Kim K W, Kim Y J, Kim I T, et al. Electrochemical conversion characteristics of ammonia to nitrogen [J]. Water Res.,2006, 40(7): 1431-1441

[3] Ges I A, Ivanov B L, Schaffer D K, et al. Thin-film IrOx pH microelectrode for microfluidic-based microsystems [J]. Biosens.Bioelectron., 2005, 21(2): 248-256

[4] Jeong J, Kim C, Yoon J. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes [J]. Water Res., 2009, 43(4):895-901

[5] Yao W L, Yang J, Wang J L, et al. Chemical deposition of platinum nanoparticles on iridium oxide for oxygen electrode of unitized regenerative fuel cell [J]. Electrochem. Commun., 2007,9(5): 1029-1034

[6] Escalante G I L, Duron T S M, Cruz J C, et al. Electrochemical characterization of IrO2-Pt and RuO2-Pt mixtures as bifunctional electrodes for unitized regenerative fuel cells [J]. J. New Mater. Electrochem. Syst., 2010, 13(3): 227-233

[7] Hu Z Q. Foundation of Material Science [M]. Beijing: Chemical Industry Press, 2004

 (胡志强. 无机材料科学基础教程 [M]. 北京: 化学工业出版社, 2004)

[8] LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. J. Am. Chem. Soc.,1950, 72(11): 4847-4854

[9] Reiss H. The growth of uniform colloidal dispersions [J].J. Chem. Phys., 1951, 19(4): 482-487

[10] De S Y, Deriemaeker L, Finsy R. A simple computer simulation of Ostwald ripening [J]. Langmuir, 1997, 13(26):6884-6888

[11] Massot L, Palau P, Savall A, et al. Comparison between derived sol-gel and conventional methods for the preparation of dimensionally stable Ta/IrO2 anodes for oxygen evolution [J].J. New Mater. Electrochem. Syst., 2007, 10(2): 123-128

[12] Ouattara L, Fierro S, Frey O, et al. Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution [J]. J. Appl. Electrochem., 2009, 39(8):1361-1367

[13] Fierro S, Kapalka A, Comninellis C. Electrochemical comparison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution [J]. Electrochem. Commun., 2010, 12(1):172-174

[14] Slavcheva E, Radev I, Topalov G, et al. Sputtered electrocatalysts for PEM electrochemical energy converters [J].Electrochim. Acta, 2007, 53(2): 362-368

[15] Slavcheva E, Schnakenberg U, Mokwa W. Deposition of sputtered iridium oxide-Influence of oxygen flow in the reactor on the film properties [J]. Appl. Surf. Sci., 2006, 253(4): 1964-1969

[16] Wang S J, Ding A L, Qiu P S, et al. IrO2 thin films deposited by DC magnetron sputtering method [J]. J. Inorg. Mater.,2000, 15(4): 733-739

[17] Thanawala S, Georgiev D G, Baird R J, et al. Characterization of iridium oxide thin films deposited by pulsed-direct-current reactive sputtering [J]. Thin Solid Films,2007, 515(18): 7059-7065

[18] Klamklang S, Vergnes H, Senocq F, et al. Deposition of tin oxide, iridium and iridium oxide films by metal-organic chemical vapor deposition for electrochemical wastewater treatment [M].Netherlands: Springer Netherlands, 2010

[19] Kimura T, Goto T. Ir-YSZ nano-composite electrodes for oxygen sensors [J]. Surf. Coat. Technol., 2005, 198(1-3): 36-39.

[20] Shimizu M, Kita K, Fujisawa H, et al. Preparation of Ir-based thin film electrodes by MOCVD [A]. Proceedings of the 2001 12th IEEE International Symposium on Applications of Ferroelectrics [C]. 2001

[21] Klink M J, Makgae M E, Crouch A M. Physico-chemical and electrochemical characterization of Ti/RhOxIrO2 electrodes using sol-gel technology [J]. Mater. Chem. Phys., 2010,124(1): 73-77

[22] Chen Y Y, Tang D.  Studying on the titanium anodes coating with chlorine evolution and oxygen evolution syncretism [J].Rare Metal Mater. Eng., 2009, 38(7): 1214-1218

[23] Chen K N. Dimensional Stable Anode [M]. Shanghai: East China Normal University Press, 1989  (陈康宁. 金属阳极 [M].上海: 华东师范大学出版社, 1989)

[24] Ye F, Li J L, Wang X D, et al. Electrocatalytic properties of Ti/Pt-IrO2 anode for oxygen evolution in PEM water electrolysis [J]. Int. J. Hydrogen Energy, 2010, 35(15):8049-8055

[25] Zhang Y N, Zhang H M, Ma Y W, et al. A novel bifunctional electrocatalyst for unitized regenerative fuel cell [J]. J. Power Sources, 2010, 195(1): 142-145

[26] Ioroi T, Kitazawa N, Yasuda K, et al. Iridium oxide/\linebreak platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells [J]. J. Electrochem. Soc., 2000, 147(6): 2018-2022

[27] Yagi M, Tomita E, Kuwabara T. Remarkably high activity of electrodeposited IrO2 film for electrocatalytic water oxidation [J]. J. Electroanal. Chem., 2005, 579(1): 83-88

[28] Wang X M, Hu J M, Zhang J Q. IrO2-SiO2 binary oxide films: Preparation, physiochemical characterization and their electrochemical properties [J]. Electrochim. Acta, 2010, 55(15): 4587-4593

[29] Xu L K, Xin Y L, Wang J T. A comparative study on IrO2-Ta2O5 coated titanium electrodes prepared with different methods [J]. Electrochim. Acta, 2009, 54(6): 1820-1825

[30] Lassali T A F, Boodts J F C, Bulhoes L O S. Faradaic impedance investigation of the deactivation mechanism of Ir-based ceramic oxides containing TiO2 and SnO2 [J]. J. Appl. Electrochem., 2000, 30(5): 625-634

[31] De Pauli C P, Trasatti S. Composite materials for electrocatalysis of O2 evolution: IrO2+SnO2 in acid solution [J]. J. Electroanal. Chem., 2002, 538-539(SI): 145-151

[32] Xin Y, Xu L, Wang J, et al. Effect of sintering temperature on microstructure and electrocatalytic properties of Ti/IrO2-Ta2O5 anodes by Pechini method [J]. Rare Met.Mater. Eng., 2010, 39(11): 1903-1907

[33] Qin X S, Gao F R, Chen G H. Effects of the geometry and operating temperature on the stability of Ti/IrO2-SnO2-Sb2O5 electrodes for O2 evolution [J]. J. Appl. Electrochem., 2010, 40(10): 1797-1805

[34] Ye Z J, Gan Y P, Zhang W K, et al. Electrocatalytic properties of IrO2Ta2O5/Ti coating anodes with TiN interlayer [J]. Chin. J. Nonferrous Met., 2009, (8): 1473-1479

 (叶张军, 甘永平, 张文魁等.含TiN中间层IrO2-Ta2O5涂层钛阳极的电催化性能[J].中国有色金属学报, 2009, (8): 1473-1479)

[35] Chen X M, Chen G H, Yue P L. Stable Ti/IrOx-Sb2O5-SnO2 anode for O2 evolution with low Ir content [J]. J. Phys. Chem., 2001, 105(20)B: 4623-4628

[36] Santana M H P, De Faria L A, Boodts J F C. Effect of preparation procedure of IrO2-Nb2O5 anodes on surface and electrocatalytic properties [J]. J. Appl. Electrochem., 2005,35(9): 915-924

[37] Takasu Y, Yoshinaga N, Sugimoto W. Oxygen reduction behavior of RuO2/Ti, IrO2/Ti and IrM (M: Ru, Mo, W, V) Ox/Ti binary oxide electrodes in a sulfuric acid solution [J].Electrochem. Commun., 2008, 10(4): 668-672

[38] Yoshinaga N, Sugimoto W, Takasu Y. Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution [J].Electrochim. Acta, 2008, 54(2): 566-573

[39] Chang C H, Yuen T S, Nagao Y, et al. Electrocatalytic activity of iridium oxide nanoparticles coated on carbon for oxygen reduction as cathode catalyst in polymer electrolyte fuel cell [J].J. Power Sources, 2010, 195(18): 5938-5941

[40] Chang C C, Wen T C, Yang C H, et al. Influence of calcination temperature of IrO2/Ti electrodes on oxygen reduction [J]. Mater. Chem. Phys., 2009, 115(1): 93-97
[1] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[2] 邝刘伟,范希梅,郝军,张会广. 化学镀Ni-B合金镀层性能[J]. 中国腐蚀与防护学报, 2011, 31(4): 315-318.