|
|
IrO2复合涂层电极的研究进展 |
汪广进,潘牧 |
武汉理工大学材料复合新技术国家重点实验室 湖北省燃料电池重点实验室 武汉 430070 |
|
RESEARCH PROGRESS OF IRIDIUM OXIDE COMPOSITES ELECTRODES |
WANG Guangjin, PAN Mu |
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Hubei Provincial Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070 |
[1] Kim K W, Kim Y J, Kim I T, et al. The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode [J]. Electrochim. Acta, 2005, 50(22): 4356-4364[2] Kim K W, Kim Y J, Kim I T, et al. Electrochemical conversion characteristics of ammonia to nitrogen [J]. Water Res.,2006, 40(7): 1431-1441[3] Ges I A, Ivanov B L, Schaffer D K, et al. Thin-film IrOx pH microelectrode for microfluidic-based microsystems [J]. Biosens.Bioelectron., 2005, 21(2): 248-256[4] Jeong J, Kim C, Yoon J. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes [J]. Water Res., 2009, 43(4):895-901[5] Yao W L, Yang J, Wang J L, et al. Chemical deposition of platinum nanoparticles on iridium oxide for oxygen electrode of unitized regenerative fuel cell [J]. Electrochem. Commun., 2007,9(5): 1029-1034[6] Escalante G I L, Duron T S M, Cruz J C, et al. Electrochemical characterization of IrO2-Pt and RuO2-Pt mixtures as bifunctional electrodes for unitized regenerative fuel cells [J]. J. New Mater. Electrochem. Syst., 2010, 13(3): 227-233[7] Hu Z Q. Foundation of Material Science [M]. Beijing: Chemical Industry Press, 2004 (胡志强. 无机材料科学基础教程 [M]. 北京: 化学工业出版社, 2004)[8] LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. J. Am. Chem. Soc.,1950, 72(11): 4847-4854[9] Reiss H. The growth of uniform colloidal dispersions [J].J. Chem. Phys., 1951, 19(4): 482-487[10] De S Y, Deriemaeker L, Finsy R. A simple computer simulation of Ostwald ripening [J]. Langmuir, 1997, 13(26):6884-6888[11] Massot L, Palau P, Savall A, et al. Comparison between derived sol-gel and conventional methods for the preparation of dimensionally stable Ta/IrO2 anodes for oxygen evolution [J].J. New Mater. Electrochem. Syst., 2007, 10(2): 123-128[12] Ouattara L, Fierro S, Frey O, et al. Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution [J]. J. Appl. Electrochem., 2009, 39(8):1361-1367[13] Fierro S, Kapalka A, Comninellis C. Electrochemical comparison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution [J]. Electrochem. Commun., 2010, 12(1):172-174[14] Slavcheva E, Radev I, Topalov G, et al. Sputtered electrocatalysts for PEM electrochemical energy converters [J].Electrochim. Acta, 2007, 53(2): 362-368[15] Slavcheva E, Schnakenberg U, Mokwa W. Deposition of sputtered iridium oxide-Influence of oxygen flow in the reactor on the film properties [J]. Appl. Surf. Sci., 2006, 253(4): 1964-1969[16] Wang S J, Ding A L, Qiu P S, et al. IrO2 thin films deposited by DC magnetron sputtering method [J]. J. Inorg. Mater.,2000, 15(4): 733-739[17] Thanawala S, Georgiev D G, Baird R J, et al. Characterization of iridium oxide thin films deposited by pulsed-direct-current reactive sputtering [J]. Thin Solid Films,2007, 515(18): 7059-7065[18] Klamklang S, Vergnes H, Senocq F, et al. Deposition of tin oxide, iridium and iridium oxide films by metal-organic chemical vapor deposition for electrochemical wastewater treatment [M].Netherlands: Springer Netherlands, 2010[19] Kimura T, Goto T. Ir-YSZ nano-composite electrodes for oxygen sensors [J]. Surf. Coat. Technol., 2005, 198(1-3): 36-39.[20] Shimizu M, Kita K, Fujisawa H, et al. Preparation of Ir-based thin film electrodes by MOCVD [A]. Proceedings of the 2001 12th IEEE International Symposium on Applications of Ferroelectrics [C]. 2001[21] Klink M J, Makgae M E, Crouch A M. Physico-chemical and electrochemical characterization of Ti/RhOxIrO2 electrodes using sol-gel technology [J]. Mater. Chem. Phys., 2010,124(1): 73-77[22] Chen Y Y, Tang D. Studying on the titanium anodes coating with chlorine evolution and oxygen evolution syncretism [J].Rare Metal Mater. Eng., 2009, 38(7): 1214-1218[23] Chen K N. Dimensional Stable Anode [M]. Shanghai: East China Normal University Press, 1989 (陈康宁. 金属阳极 [M].上海: 华东师范大学出版社, 1989)[24] Ye F, Li J L, Wang X D, et al. Electrocatalytic properties of Ti/Pt-IrO2 anode for oxygen evolution in PEM water electrolysis [J]. Int. J. Hydrogen Energy, 2010, 35(15):8049-8055[25] Zhang Y N, Zhang H M, Ma Y W, et al. A novel bifunctional electrocatalyst for unitized regenerative fuel cell [J]. J. Power Sources, 2010, 195(1): 142-145[26] Ioroi T, Kitazawa N, Yasuda K, et al. Iridium oxide/\linebreak platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells [J]. J. Electrochem. Soc., 2000, 147(6): 2018-2022[27] Yagi M, Tomita E, Kuwabara T. Remarkably high activity of electrodeposited IrO2 film for electrocatalytic water oxidation [J]. J. Electroanal. Chem., 2005, 579(1): 83-88[28] Wang X M, Hu J M, Zhang J Q. IrO2-SiO2 binary oxide films: Preparation, physiochemical characterization and their electrochemical properties [J]. Electrochim. Acta, 2010, 55(15): 4587-4593[29] Xu L K, Xin Y L, Wang J T. A comparative study on IrO2-Ta2O5 coated titanium electrodes prepared with different methods [J]. Electrochim. Acta, 2009, 54(6): 1820-1825[30] Lassali T A F, Boodts J F C, Bulhoes L O S. Faradaic impedance investigation of the deactivation mechanism of Ir-based ceramic oxides containing TiO2 and SnO2 [J]. J. Appl. Electrochem., 2000, 30(5): 625-634[31] De Pauli C P, Trasatti S. Composite materials for electrocatalysis of O2 evolution: IrO2+SnO2 in acid solution [J]. J. Electroanal. Chem., 2002, 538-539(SI): 145-151[32] Xin Y, Xu L, Wang J, et al. Effect of sintering temperature on microstructure and electrocatalytic properties of Ti/IrO2-Ta2O5 anodes by Pechini method [J]. Rare Met.Mater. Eng., 2010, 39(11): 1903-1907[33] Qin X S, Gao F R, Chen G H. Effects of the geometry and operating temperature on the stability of Ti/IrO2-SnO2-Sb2O5 electrodes for O2 evolution [J]. J. Appl. Electrochem., 2010, 40(10): 1797-1805[34] Ye Z J, Gan Y P, Zhang W K, et al. Electrocatalytic properties of IrO2Ta2O5/Ti coating anodes with TiN interlayer [J]. Chin. J. Nonferrous Met., 2009, (8): 1473-1479 (叶张军, 甘永平, 张文魁等.含TiN中间层IrO2-Ta2O5涂层钛阳极的电催化性能[J].中国有色金属学报, 2009, (8): 1473-1479)[35] Chen X M, Chen G H, Yue P L. Stable Ti/IrOx-Sb2O5-SnO2 anode for O2 evolution with low Ir content [J]. J. Phys. Chem., 2001, 105(20)B: 4623-4628[36] Santana M H P, De Faria L A, Boodts J F C. Effect of preparation procedure of IrO2-Nb2O5 anodes on surface and electrocatalytic properties [J]. J. Appl. Electrochem., 2005,35(9): 915-924[37] Takasu Y, Yoshinaga N, Sugimoto W. Oxygen reduction behavior of RuO2/Ti, IrO2/Ti and IrM (M: Ru, Mo, W, V) Ox/Ti binary oxide electrodes in a sulfuric acid solution [J].Electrochem. Commun., 2008, 10(4): 668-672[38] Yoshinaga N, Sugimoto W, Takasu Y. Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution [J].Electrochim. Acta, 2008, 54(2): 566-573[39] Chang C H, Yuen T S, Nagao Y, et al. Electrocatalytic activity of iridium oxide nanoparticles coated on carbon for oxygen reduction as cathode catalyst in polymer electrolyte fuel cell [J].J. Power Sources, 2010, 195(18): 5938-5941[40] Chang C C, Wen T C, Yang C H, et al. Influence of calcination temperature of IrO2/Ti electrodes on oxygen reduction [J]. Mater. Chem. Phys., 2009, 115(1): 93-97 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|