Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (2): 95-101    
  研究报告 本期目录 | 过刊浏览 |
微观组织对X52钢抗H2S腐蚀和开裂性能的影响
姚学军,王俭秋,左景辉,韩恩厚,柯伟
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
MICROSTRUCTURE EFFECTS ON CORROSION AND CRACKING BEHAVIOR OF X52 PIPELINE STEEL IN H2S ENVIRONMENT
YAO Xuejun, WANG Jianqiu, ZUO Jinghui, HAN En-Hou, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(2378 KB)  
摘要: 通过对X52钢进行热处理获得三种不同组织。SEM观察发现三种组织分别为铁素体/带状珠光体、马氏体/贝氏体和针状铁素体/回火马氏体。通过动电位极化、线性极化电阻、氢致开裂(HIC)实验和硫化物应力腐蚀开裂(SSC)实验,研究了不同热处理对X52钢在H2S环境中的腐蚀与开裂行为的影响。结果表明马氏体/贝氏体显微组织由于位错密度很高且脆性大,因而腐蚀速率及HIC和SSC敏感性很高。铁素体/带状珠光体组织和针状铁素体/回火马氏体组织腐蚀速率及HIC和SSC敏感性很低。针状铁素体/回火马氏体组织由于不含带状组织且晶粒细小以及碳化物的析出,因此其HIC和SSC抗性优于铁素体/带状珠光体组织。
关键词 低合金钢微观组织硫化氢氢致开裂硫化物应力腐蚀开裂    
Abstract:Three different microstructures of X52 pipeline steel were obtained through different heat treatments. SEM results showed that the three different microstructures were ferrite/band pearlite, martensite/bainite and acicular ferrite/tempered martensite. The effects of microstructures on corrosion and cracking behavior of X52 steel in the H2S-containing solution were studied through potentiodynamic polarization measurements, linear polarization resistance measurements, hydrogen induced cracking (HIC) tests and sulfide stress cracking (SSC) tests. The results showed that martensite/bainite had the highest corrosion rate as well as highest susceptibility to suffer HIC and SSC of all the three microstructures due to its high density tangled dislocation and its high brittlement. Both of ferrite/band pearlite and acicular ferrite/tempered martensite had lower corrosion rate and better HIC and SSC resistance compared to martensite/bainite. However, the acicular ferrite/tempered martensite microstructure had higher resistance of HIC and SSC than ferrite/band pearlite due to the elimination of band structures, grain refinement and the precipitation of fine carbides in the matrix.
Key wordslow alloyed steel    microstructures    H2S    HIC    SSC
收稿日期: 2010-12-22     
ZTFLH: 

TG172.9

 
基金资助:

中国石化青岛安全工程研究院化学品安全控制国家重点实验室资助

通讯作者: 王俭秋     E-mail: wangjianqiu@imr.ac.cn
Corresponding author: Jianqiu WANG     E-mail: wangjianqiu@imr.ac.cn
作者简介: 姚学军,男,1985年生,硕士生,研究方向为H$_{2}$S的腐蚀与防护

引用本文:

姚学军,王俭秋,左景辉,韩恩厚,柯伟. 微观组织对X52钢抗H2S腐蚀和开裂性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 95-101.
YAO Hua-Jun, YU Jian-Qiu. MICROSTRUCTURE EFFECTS ON CORROSION AND CRACKING BEHAVIOR OF X52 PIPELINE STEEL IN H2S ENVIRONMENT. J Chin Soc Corr Pro, 2012, 32(2): 95-101.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I2/95

[1] Beidokhti B, Dolati A, Koukabi A H. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking [J]. Mater. Sci. Eng., 2009, A507(1/2): 167-173

[2] Lucio-Garcia M A, Gonzalez J G, Casales M. Effect of heat treatment on H2S corrosion of a micro-alloyed C-Mn steel [J].Corros. Sci., 2009, 51(10): 2380-2386

[3] Ramirez E, Gonzalez-Rodriguez J G, Torres-Islas A, et al. Effect of microstructure on the sulphide stress cracking susceptibility of a high strength pipeline steel [J]. Corros. Sci., 2008, 50(12): 3534-3541

[4] Carneiro R A, Ratnapuli R C, Cunhua-lins V F. The influence of chemical composition and microstructure of API pipeline steels on hydrogen induced cracking and sulfide stress corrosion cracking [J]. Mater. Sci. Eng., 2003, A357(1/2): 104-110

[5] Zhao M C, Shan Y Y, Xiao F R, et al. Investigation on the H2S-resistant behavior of acicular ferrite and ultrafine ferrite [J]. Mater. Lett., 2002, 57(1): 141-145

[6] Gyu T P, Sung U K, Hwan G J, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of pipeline steel [J]. Corros. Sci., 2008, 50(7):1865-1871

[7] Fragiel A, Serna S, Campillo B, et al. Dissimilar mechanical properties-microstructures microalloyed pipeline steels cracking performance under sour environment [J]. Mater. Sci. Eng.,2007, A467(1/2): 1-7

[8] Fragiel A, Serna S, Perez R. Electrochemical study of two microalloyed pipeline steels in H2S environments [J]. Int. J.Hydrogen Energy, 2005, 30(12): 1303-1309

[9] Kane R D. Roles of H2S in the behavior of engineering alloy [J]. Int. Mater. Rev., 1985, 30(11): 291-301

[10] Arzola S, Mendoza-Florez J, Duran-Romero R, et al. Electrochemical behavior of API X70 steel in hydrogen sulfide-containing solutions [J]. Corrosion, 2006, 62(5): 433-442

[11] Huang H H, Tsay W T, Lee J T. Electrochemical behavior of the simulated heat affected zone of A516 carbon steel in H2S solution [J]. Electrochim. Acta, 1996, 41(7/8): 1191-1199

[12] Bhargava G, Ramanarayanan T A, Smith S N, et al. Inhibition of iron corrosion by imidazole: an electrochemical and surface science study [J]. Corrosion, 2009, 65(5): 308-317

[13] Bernstein I M. Hydrogen-induced cracking in iron: morphology and crack path dependence [J]. Metall. Mater. Trans.,1970, 1(11)B: 3143-3150

[14] Mclntyre D R, Boah J K. Review of sour service definitions[J]. Mater. Performance. 1996, 35(88): 54-58

[15] Hanninen H E, Lee T C, Robertson I M, et al. In situ observations on the role of hydrogen on deformation and fracture of A5338 pressure vessel steel [J]. J. Mater. Eng.Perform., 1993, 2(6): 807-817

[16] Oriani R A. Hydrogen embrittlement of steels [J]. Annu.Rev. Mater. Sci., 1978, 8: 327-357

[17] Li M, Li X G, Chen H. A review on corrosion behavior and mechanism of metals wet H2S [J]. Corros. Sci. Prot. Technol.,2005, 17(2): 107-111

     (李明, 李晓刚, 陈华.在湿H2S环境中金属腐蚀行为和机理研究概述 [J].腐蚀科学与防护技术, 2005, 17(2): 107-111)

[18] Tang J Q, Gong J M, Zhang X C, et al. Comparison on the cracking susceptibility of different low alloy steel weldments exposed to the environment containing wet H2S [J]. Eng. Fail.Anal., 2006, 13(7): 1057-1064

[19] Wan K K, Seong U K, Boo Y Y, et al. Effect of environment and metallurgical factors on hydrogen induced cracking of HSLA steel[J]. Corros. Sci., 2008, 50(12): 3336-3342

[20] Zhao M C, Shan Y Y, Li Y H, et al. Effect of microstructure on sulfide stress corrosion cracking of pipeline steels [J]. Acta Metall. Sin., 2001, 37(10): 1087-1092

     (赵明纯, 单以银, 李玉海等.显微组织对管线钢硫化物应力腐蚀开裂的影响[J]. 金属学报, 2001, 37(10):1087-1092)

[21] Beidokhti B, Koukabi A H, Dolati A. Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel [J]. J. Mater. Process. Technol.,2009, 209 (8): 4027-4035

[22] Al-Mansour M, Alfantazi A M, Ei-boujdaini M. Sulfide stress cracking resistance of API-X100 high strength low alloy steel [J]. Mater. Des., 2009, 30(10): 4088-4094

[23] Zhao M C, Shan Y Y, Xiao F R, et al. Investigation on the H2S resistant behavior of acicular ferrite and ultrafine ferrite[J]. Mater. Lett., 2002, 57(1): 141-145

[24] Charbonnier J C, Margot-Marette H, Brass A M, et al. Sulfide stress cracking of high strength modified Cr-Mo steels [J].Metall. Mater. Trans., 1985, 16(5)A: 935-944\par
[1] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[2] 郭强, 陈长风, 李世瀚, 于浩波, 李鹤林. 冷焊修复层在H2S环境下的开裂行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[3] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[4] 胡骞,刘静,王玉昆,黄峰,戴明杰,侯阳来. 不同组织A710钢在NaCl溶液中耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 611-616.
[5] 潘俊艳,陈华辉,马峰,谢波,吴迎飞,赵赋,张祚炜. 低合金钢在高矿化度矿井水环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 253-259.
[6] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[7] 王斌, 周翠, 李良君, 胡红梅, 朱加祥. X100管线钢焊接接头抗HIC性能研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.
[8] 鲁金涛, 谷月峰. 电站锅炉关键部件材料高温蒸汽氧化研究进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 19-26.
[9] 杨 超, 张慧霞 郭为民 付玉彬. 添加双氧水对高强度低合金钢在海水中
腐蚀影响的研究
[J]. 中国腐蚀与防护学报, 2013, 33(3): 205-210.
[10] 董希青,黄彦良. 不锈钢在海洋环境中的环境敏感断裂研究进展[J]. 中国腐蚀与防护学报, 2012, 32(3): 189-194.
[11] 易建龙,张新明. Ce对Mg-9Gd-4Y-1Nd-0.6Zr合金微观组织和耐蚀性的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 262-266.
[12] 饶思贤,万章,宋光雄,张铮,钟群鹏. 基于规则的晶间腐蚀和氢致开裂的失效模式诊断[J]. 中国腐蚀与防护学报, 2011, 31(4): 260-264.
[13] 崔世华,李春福,王朋飞,邓洪达. 高含H2S/CO2环境中P110钢应力腐蚀[J]. 中国腐蚀与防护学报, 2010, 30(3): 213-216.
[14] 镇凡;刘静;黄峰;程吉浩;李翠玲;郭斌;徐进桥. 夹杂物对X120管线钢氢致开裂的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 145-149.
[15] 张恒 陈学群 常万顺. 冶金因素对钢点蚀诱发敏感性的影响[J]. 中国腐蚀与防护学报, 2009, 29(2): 127-131.