Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 293-299    DOI: 10.11902/1005.4537.2016.030
  本期目录 | 过刊浏览 |
7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究
刘德强1,2,柯黎明1,3(),徐卫平1,邢丽1,毛育青3
1 南昌航空大学航空制造工程学院 南昌 330063
2 江铃控股有限公司 南昌 330052
3 西北工业大学 凝固技术国家重点实验室 西安 710072
Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy
Deqiang LIU1,2,Liming KE1,3(),Weiping XU1,Li XING1,Yuqing MAO3
1 School of Aeronautical Manufacturing and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 Jiangling Holdings Co., Ltd., Nanchang 330052, China
3 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(6631 KB)   HTML
摘要: 

对20 mm厚7075铝合金搅拌摩擦焊 (FSW) 接头沿板厚方向进行分层晶间腐蚀行为研究。借助光学显微镜及扫描电子显微镜分析了接头组织、第二相成分及分布、腐蚀深度及接头各区腐蚀形貌。结果表明:焊缝中心区腐蚀程度最轻,热机影响区 (TMAZ) 次之,热影响区 (HAZ) 腐蚀程度最严重;沿板厚向下,焊核区 (NZ) 腐蚀程度逐渐变大,TMAZ腐蚀程度先变大后减小,HAZ腐蚀程度逐渐减小;接头沿板厚方向晶粒大小和第二相粒子尺寸及分布存在差异,是造成沿板厚方向各区不同晶间腐蚀程度的主要原因。

关键词 搅拌摩擦焊厚板7075铝合金晶间腐蚀第二相    
Abstract

The intergranular corrosion behavior of friction-stir welding (FSW) joint for 20 mm thick plate of 7075 Al-alloy was investigated in solution of 57 g NaCl+1000 mL H2O+10 mL H2O2 corresponding to the national standard GBT7998-2005. The microstructure of welded joint, the composition and distribution of the second phase, corrosion depth and corrosion morphology of different zones of the weld joint were characterized by optical microscope and scanning electron microscope. The results show that the corrosion severity of the center zones of the weld joint is the lightest. The corrosion severity of the thermal mechanical affected zone (TMAZ) is between that of the center zones and heat affected zone (HAZ). Downward along the thickness direction of the weld joint, the corrosion severity of the nugget zone (NZ) gradually increased, while that of the TMAZ increased first and then decreased, and that of the HAZ gradually decreased. The difference in the size and the distribution of the second phase and in the grains size of the weld joint along the thickness direction may be the main factor which caused the different corrosion severity for different zones along the thickness direction of the weld joint.

Key wordsFSW    heavy plate    7075 Al-alloy    intergranular corrosion    the second phase
收稿日期: 2016-03-09     
基金资助:国家自然科学基金 (51265043和51364037) 及航空科学基金 (20140956003)

引用本文:

刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
Deqiang LIU, Liming KE, Weiping XU, Li XING, Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 293-299.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.030      或      https://www.jcscp.org/CN/Y2017/V37/I3/293

图1  晶间腐蚀试样截取示意图
图2  7075铝合金焊接接头横截面宏观形貌
图3  沿板厚方向各层试样上表面晶间腐蚀宏观形貌
图4  3#试样各区晶间腐蚀显微形貌
Sample Area Max. depth / μm
1# NZ 23.8
HAZ 123.8
TMAZ 44.4
3# NZ 13.3
HAZ 80.0
TMAZ 68.5
5# NZ 18.8
HAZ 71.1
TMAZ 57.8
表1  沿板厚方向试样各层各区晶间腐蚀深度
图5  3#试样各区晶间腐蚀深度测量图
图6  1#,3#和5#试样沿焊缝厚度方向水平面不同区域微观组织形貌
图7  1#试样各区第二相分布
Element Particle1 Particle2 Particle3
Al 76.76 78.14 78.7
Fe 10.31 10.52 16.68
Cu 5.36 6.94 4.62
Zn 1.32 --- ---
Cr 2.90 2.33 ---
Si 1.91 2.07 ---
Mn 1.17 --- ---
表2  第二相粒子成分分析
[1] Zeng Y, Yin Z M, Pan Q L, et al.Present research and developing trends of ultra high strength aluminum alloys[J]. J. Central South Univ. Technol., 2002, 33: 592
[1] (曾渝, 尹志民, 潘青林等. 超高强铝合金的研究现状及发展趋势[J]. 中南工业大学学报, 2002, 33: 592)
[2] Yang M C, Sun Z G, Ma R, et al.Analysis for microstructure and precipitation phase evolution of friction stir welding 2060 butt joint[J]. Mater. Sci. Technol., 2014, 22(1): 118
[2] (杨模聪, 孙中刚, 马锐等. 2060搅拌摩擦焊对接接头显微组织与析出相分析[J]. 材料科学与工艺, 2014, 22(1): 118)
[3] He J J, Li Y B, Li S H, et al.Microstructure and mechanical properties of welded joint of 7075 aluminum alloy by FSW[J]. Hot Work. Technol., 2011, 40(19): 142
[3] (何建军, 李玉斌, 李盛和等. 7075铝合金搅拌摩擦焊接头组织与力学性能研究[J]. 热加工工艺, 2011, 40(19): 142)
[4] Gao H, Dong J H, Zhang K, et al.Variations of the microstructure and mechanical properties for the thick aluminum friction stir welding joint along the thickness direction[J]. Trans. China Weld. Inst., 2014, 35(8): 61
[4] (高辉, 董继红, 张坤等. 厚板铝合金搅拌摩擦焊接头组织及性能沿厚度方向的变化规律[J]. 焊接学报, 2014, 35(8): 61)
[5] Gong W B, Tian H J, Liu W, et al.Mechanical properties change along the thickness direction of thick aluminium alloy 6082-T6 Plate[J]. Rare Met. Mater. Eng., 2012, 41(suppl.2): 854
[5] (宫文彪, 田红娇, 刘威等. 6082-T6铝合金厚板搅拌摩擦焊沿厚度方向性能变化[J]. 稀有金属材料与工程, 2012, 41(增刊2): 854)
[6] Canaday C T, Moore M A, Tang W, et al.Through thickness property variations in a thick plate AA7050 friction stir welded joint[J]. Mater. Sci. Eng., 2013, A559: 678
[7] Zhou P Z, Zhong J, He D Q, et al.Microstructure-property and fracture behavior of friction-stir welded 2519 aluminium alloy plate[J]. Trans. China Weld. Inst., 2006, 27(4): 33
[7] (周鹏展, 钟掘, 贺地求等. 2519厚板搅拌摩擦焊缝组织性能及断裂分析[J]. 焊接学报, 2006, 27(4): 33)
[8] Mao Y Q, Ke L M, Liu F C, et al.Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate[J]. Mater. Des., 2014, 62: 334
[9] Zhou P Z, Li D H, He D Q, et al.Through-thickness diversity of properties in friction stir welded 2219-T87 thick aluminum alloy plate[J]. Trans. China Weld. Inst., 2007, 28(10): 5
[9] (周鹏展, 李东辉, 贺地求等. 2219-T87厚板搅拌摩擦焊沿厚度方向的性能差异[J]. 焊接学报, 2007, 28(10): 5)
[10] Xu W F, Liu J H, Zhu H Q.Pitting corrosion of friction stir welded aluminum alloy thick plate in alkaline chloride solution[J]. Electrochim. Acta, 2010, 55: 2918
[11] Hu B H, Xin L, Wang S L.Corrosion morphology for LY12 aluminum alloy friction stir welded in 3.5% NaCl Solution[J]. J. Nanchang Hangkong Univ.(Nat. Sci.), 2012, 26(3): 52
[11] (胡百晖, 邢丽, 王善林. LY12铝合金搅拌摩擦焊焊缝在3.5%NaCl溶液中的腐蚀形貌[J]. 南昌航空大学学报(自然科学版), 2012, 26(3): 52)
[12] Xu W F, Liu J H, Zhu H Q.Numerical simulation of thermal field of friction stir welded 2219 aluminum alloy thick plate[J]. Trans. China Weld. Inst., 2010, 31(2): 63
[12] (徐伟锋, 刘金合, 朱宏强. 2219铝合金厚板搅拌摩擦焊接温度场数值模拟[J]. 焊接学报, 2010, 31(2): 63)
[13] Lin G Y.Fundamental research related to the fabrication technology for high quality thick plates of 7×75 series aluminum alloys [D]. Changsha: Central South University, 2006(林高用. 高性能7×75系铝合金厚板加工技术相关基础研究 [D]. 长沙: 中南大学, 2006)
[14] Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook (Vol.III) [M]. Beijing: China Standard Publishing House, 2002
[14] (《中国航空材料手册》编辑委员会. 中国航空材料手册(第三卷) [M]. 北京: 中国标准出版社, 2002)
[15] Zhou K, Wang B, Zhao Y, et al.Corrosion and electrochemical behaviors of 7A09 Al-Zn-Mg-Cu alloy in chloride aqueous solution[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 2509
[16] El-Amoush A S. Intergranular corrosion behavior of the 7075-T6 aluminum alloy under different annealing conditions[J]. Mater. Chem. Phys., 2011, 126: 607
[17] Yang B C, Yan J H, Sutton M A, et al.Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: Part I. Metallurgical studies[J]. Mater. Sci. Eng., 2004, A364: 55
[18] Li C X, Xu J, Li J F, et al.Comparison of mechanical properties and corrosion behaviors of 7075 aluminum alloy at various aging systems[J]. Alumin. Fabricat., 2009, (5): 10
[18] (李朝兴, 徐静, 李劲风等. 不同时效制度7075铝合金力学性能及腐蚀性能综合比较研究[J]. 铝加工, 2009, (5): 10)
[19] Luo Z J, Yuan G C, Huang Z T, et al.Exfoliation corrosion resistance of 5083 aluminum alloy welds processed by friction stir welding[J]. Mater. Res. Appl., 2015, 9: 107
[19] (骆志捷, 袁鸽成, 黄泽涛等. 5083铝合金搅拌摩擦焊缝的剥落腐蚀性能[J]. 材料研究与应用, 2015, 9: 107)
[1] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[2] 杨明馨, 高阳, 王辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 199-204.
[3] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[4] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[5] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[6] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[7] 戴芸,刘胜胆,邓运来,张新明. 7020铝合金在3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[8] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[9] 彭新元,周贤良,华小珍. 晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[10] 许龙, 姚希, 李劲风, 蔡超. 2099铝锂合金晶间腐蚀行为与时效制度的相关性[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.
[11] 张华 孙大同 张 贺 赵衍华 马芳芳 许可人. 铝合金搅拌摩擦焊接接头腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2013, 33(3): 175-181.
[12] 俞树荣,何燕妮,李淑欣,王璐. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74.
[13] 冯万里,张乐福,马明娟. 轧制变形对690合金特殊晶界比例及耐晶间腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[14] 康举,董春林,栾国红,何淼,付瑞东. 2024铝合金搅拌摩擦焊焊缝表面腐蚀机理探索[J]. 中国腐蚀与防护学报, 2011, 31(4): 282-288.
[15] 饶思贤,万章,宋光雄,张铮,钟群鹏. 基于规则的晶间腐蚀和氢致开裂的失效模式诊断[J]. 中国腐蚀与防护学报, 2011, 31(4): 260-264.