Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 254-260    DOI: 10.11902/1005.4537.2016.019
  本期目录 | 过刊浏览 |
碳纳米管含量对环氧树脂涂层性能的影响研究
张娟(),刘自强,冯涛,温世峰,陈瑞卿
西北工业大学力学与土木建筑学院先进材料测试中心 西安 710129
Effect of Carbon Nanotube on Properties of Epoxy Coating
Juan ZHANG(),Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN
Advanced Material Test Center, School of Mechanics, Civil & Architecture, Northwestern Polytechnical University, Xi'an 710129, China
全文: PDF(3069 KB)   HTML
摘要: 

以环氧树脂为基料,氨基硅烷为固化剂,气相SiO2为分散助剂,碳化二亚胺为改性助剂,制备了不同碳纳米管含量的环氧树脂涂层。采用拉拔法测附着力,球盘磨损测耐磨性,电化学和丝状腐蚀测耐蚀性,全面评价了碳纳米管含量对环氧树脂涂层性能的影响。结果表明:碳纳米管含量为2% (质量分数) 时就能显著提高环氧树脂涂层的附着力、耐磨性和耐蚀性,同时增强涂层的导电性。当碳纳米管含量为5%和7%时,涂层的附着力和耐磨性进一步提高;当碳纳米管含量为10%时,涂层的附着力和耐磨性开始略微下降,但耐蚀性和导电性达到最佳状态。

关键词 碳纳米管环氧树脂涂层附着力摩擦腐蚀电化学阻抗谱    
Abstract

Epoxy coatings with different mass fraction of carbon nanotube (CNT) is prepared with epoxy as matrix, amine silane as curing agent, fumed silica as disperse dispersant, and carbodiimide as modifying agent. The effect of CNT amount on properties of epoxy coating is overall evaluated by means of pull-off adhesion test, ball-on-disk ear test, electrochemical impedance spectroscopy (EIS) and filiform corrosion test. The results show that, the adhesion strength, abrasion resistance and corrosion resistance are improved remarkable for the epoxy coating with 2% (mass fraction) of CNT in comparison to that without CNT addition. All the above mentioned properties are further improved for the epoxy coating with 5% and 7% of CNT. Furthermore, when the epoxy coating with the addition of CNT is up to 10%, of which the adhesion strength and abrasion resistance decreased, while the corrosion resistance and conductivity reach the optimum.

Key wordscarbon nanotube    epoxy coating    adhesion    friction    corrosion    EIS
收稿日期: 2016-01-30     
基金资助:国家自然科学基金 (51405391和51402238),中央高校基本科研业务费专项资金(3102015ZY034,3102015ZY033和3102015ZY032) 及陕西省自然科学基础研究计划项目 (2014JQ1005)

引用本文:

张娟,刘自强,冯涛,温世峰,陈瑞卿. 碳纳米管含量对环氧树脂涂层性能的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
Juan ZHANG, Ziqiang LIU, Tao FENG, Shifeng WEN, Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 254-260.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.019      或      https://www.jcscp.org/CN/Y2017/V37/I3/254

图1  碳纳米管含量对环氧树脂涂层附着力的影响
Specimen CNT contentmass fraction / % Epoxyg Amine silaneg
A 0 80.0 20.0
B 2 78.4 19.6
C 5 75.9 19.1
D 7 74.3 18.7
E 10 71.8 18.2
表1  不同含量碳纳米管的涂料配比
图2  碳纳米管含量对环氧树脂涂层耐磨性的影响
图3  不同碳纳米管含量环氧树脂涂层阻抗模值比较
图4  不同CNT含量环氧树脂涂层在3.5%NaCl溶液中浸泡不同时间后的Bode图拟合曲线
图5  碳纳米管环氧树脂涂层丝状腐蚀不同时间的表面形貌
图6  碳纳米管环氧树脂涂层丝状腐蚀90 d后胶带剥离状态
[1] Jurn Y N, Malek M F, Liu W W, et al.Review-coating methods of carbon nanotubes and their potential applications [A]. 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE)[C]. Batu Ferringhi: IEEE, 2015: 118
[2] Alishahi M, Monirvaghefi S M, Saatchi A.The effect of the carbon nanotube content on the corrosion behaviour of Ni-P-CNT composite coating[J]. Int. J. ISSI, 2012, 9: 1
[3] Montazeri A, Montazeri N.Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content[J]. Mater. Des., 2011, 32: 2301
[4] Ma P, Siddiqui N A, Marom G, et al.Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Compos. Pt. A: Appl. Sci. Manuf., 2010, 41: 1345
[5] Moisala A, Li Q, Kinloch I A, Windle A H.Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites[J]. Compos. Sci. Technol., 2006, 66: 1285
[6] Martin C A, Sandler J K W, Windle A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J]. Polymer, 2005, 46: 877
[7] Li J, Ma P C, Chow W S, et al.Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes[J]. Adv. Funct. Mater., 2007, 17(16): 3207
[8] Sandler J K W, Kirk J E, Kinloch I A, et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites[J]. Polymer, 2003, 44: 5893
[9] Husain A, Al-Bahar S, Chakkamalayath J, et al.Differential scanning calorimetry and optical photo microscopy examination for the analysis of failure of fusion bonded powder epoxy internal coating[J]. Eng. Fail. Analy., 2015, 56: 375
[10] Khun N W, Troconis B C, Frankel G S.Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3[J]. Prog. Org. Coat., 2014, 77: 72
[11] Deyab M A.Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell[J]. J. Power Sour., 2014, 268: 50
[12] Yang K, Gu M Y, Jin Y P.Cure behavior and thermal stability analysis of multiwalled carbon nanotube/epoxy resin nanocomposites[J]. J. Appl. Polym. Sci., 2008, 110: 2980
[13] Gong J, Niu R, Wen X, et al.Synergistic effect of carbon fibers and carbon nanotubes on improving thermal stability and flame retardancy of polypropylene: A combination of a physical network and chemical crosslinking[J]. RSC Adv., 2015, 5: 5484
[14] Peng C Z.The effect of surface coating of CNTs on the mechanical properties of CF-filled HDPE composites[J]. Surf. Interface Anal., 2015, 47: 357
[15] Cheng K, Yang E, Chi Y L, et al.Fine-tuned polymer Nano-composite coatings for use in geothermal plants [A]. ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems[C]. Scottsdale: ASME, 2011: 713
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.