Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 233-240    DOI: 10.11902/1005.4537.2016.017
  本期目录 | 过刊浏览 |
混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究
任继栋,高荣杰(),张宇,刘勇,丁甜
中国海洋大学材料科学与工程研究院 青岛 266100
Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties
Jidong REN,Rongjie GAO(),Yu ZHANG,Yong LIU,Tian DING
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(7630 KB)   HTML
摘要: 

通过酸性溶液对X80管线钢表面进行化学刻蚀,形成具有一定结构的微观粗糙形貌;然后通过低表面能物质十七氟癸基三乙氧基硅烷的修饰,降低钢材基底的表面能,从而成功地制备出超疏水疏油的双疏功能表面。研究了酸性刻蚀和氟化处理对表面形貌及其润湿性的影响,并通过电化学测试研究了双疏表面的耐蚀性能。结果表明:经过4 h的酸性刻蚀与氟化处理,所制备的超疏水疏油表面与去离子水,丙三醇,乙二醇和十六烷的接触角分别达到161°,156°,151.5°和146°,实现了超疏水与疏油的双疏效果。相比较未经处理的X80管线钢试样,双疏表面的腐蚀电位发生了正向移动,而腐蚀电流密度降低了两个数量级,说明双疏试样耐腐蚀性能得到了显著提高。

关键词 X80管线钢混酸刻蚀氟化处理超疏水疏油耐蚀性    
Abstract

Pipeline steel has been widely used in modern industry such as the transportation of natural gas and oil. However, its service life is mainly affected by the corrosion because of its hydrophilic and oleophilic properties. In this study, the surface of X80 pipeline steel was converted to be of super-hydrophobicity and oleophobicity by acid etching and fluoride modification. The steel was first etched by a mixed acid solution to roughen its surface, and then modified with a kind of low surface energy material, 1H, 1H, 2H, 2H-Perfluorodecyltriethoxysilane. The fluoride modification can reduce the surface energy, which is an essential step to prepare the amphiphobic surface. The influence of acid etching and modification on the morphology and the wetting behavior of the modified surface was characterized and the corrosion behavior of the amphiphobic surface was studied by potentiodynamic scanning. The result showed that the modified amphiphobic surface exhibits excellent both of hydrophobicity and oleophobicity, for substances such as water, glycerin and ethylene glycol, as well as hexadecane. After 4 h etching and fluoride modification, the contact angles of the modified steel with deionized water, glycerin, ethylene glycol and hexadecane were 161°, 156°, 151.5° and 146° respectively. The modified surface can enhance the corrosion resistance of the pipeline steel and such amphiphobic surface can be easily repaired.

Key wordsX80 pipeline steel    acid etching    fluoroalkyl silane    amphiphobicity    anti-corrosion
收稿日期: 2016-01-25     

引用本文:

任继栋,高荣杰,张宇,刘勇,丁甜. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
Jidong REN, Rongjie GAO, Yu ZHANG, Yong LIU, Tian DING. Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 233-240.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.017      或      https://www.jcscp.org/CN/Y2017/V37/I3/233

图1  酸性刻蚀4 h后管线钢表面形貌的SEM像
Liquid Surface tension / mNm-1 / 20° CA / °
Untreated Treated
Water 72.8 48.0 161.0
Glycerol 63.6 45.5 156.0
Ethylene glycol 47.7 41.0 151.5
Hexadecane 25.7 1.0 146.0
表1  不同表面张力的液体与不同表面状态的X80管线钢的接触角
图2  4种液体在X80管线钢原始表面以及双疏表面接触角的变化及液滴在双疏表面接触角的宏观照片
图3  酸性刻蚀前后X80管线钢的XRD谱
图4  X80管线钢经酸性刻蚀和氟化处理后表面的EDS分析结果,氟化处理后表面的XPS全谱和C1s的精细谱
图5  原始试样和双疏表面试样在3.5%NaCl溶液中浸泡40 min,2 h和4 h后的动电位极化曲线及双疏试样浸泡4 h后经再次氟化处理后的极化曲线
Sample lg (Icorr / Acm-2) Ecorr / V Icorr / Acm-2
X80 steel / 40 min -2.7623 -0.693 1.73×10-3
Amphiphobic surface / 40 min -4.3860 -0.290 4.11×10-5
Amphiphobic surface / 2 h -3.1105 -0.537 7.75×10-4
Amphiphobic surface /4 h -2.2495 -0.720 5.63×10-3
Remodified surface -4.7448 -0.304 1.80×10-5
表2  极化曲线的电化学拟合参数
图6  X80管线钢在3.5%NaCl溶液中浸泡不同时间后的SEM像
图7  具有双疏表面的试样在3.5%NaCl溶液中浸泡2,8,16和24 h后表面的SEM像
[1] Liu K S, Tian Y, Jiang L.Bio-inspired superoleophobic and smart materials: Design, fabrication, and application[J]. Prog. Mater. Sci., 2013, 58: 503
[2] Barthwal S, Lim S H.Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness[J]. Appl. Surf. Sci., 2015, 328: 296
[3] Genzer J, Efimenko K.Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J]. Science, 2000, 290: 2130
[4] Yoshimitsu Z, Nakajima A, Watanabe T, et al.Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002, 18: 5818
[5] Singh S, Houston J, van Swol F V, Brinker C J. Superhydrophobicity: Drying transition of confined water[J]. Nature, 2006, 442: 526
[6] Gao X F, Yao X, Jiang L.Effects of rugged nanoprotrusions on the surface hydrophobicity and water adhesion of anisotropic micropatterns[J]. Langmuir, 2007, 23: 4886
[7] Deng X, Mammen L, Butt H J, et al.Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 2012, 335: 67
[8] Tuteja A, Choi W, Ma M L, et al.Designing superoleophobic surfaces[J]. Science, 2007, 318: 1618
[9] Blossey R.Self-cleaning surfaces—virtual realities[J]. Nat. Mater., 2003, 2: 301
[10] Xiu Y H, Zhu L B, Hess D W, et al.Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity[J]. Nano Lett., 2007, 7: 3388
[11] Yuan Z Q, Xiao J Y, Wang C Q, et al.Preparation of a superamphiphobic surface on a common cast iron substrate[J]. J. Coat. Technol. Res., 2011, 8: 773
[12] Li J, Liu X H, Ye Y P, et al.Fabrication of superhydrophobic CuO surfaces with tunable water adhesion[J]. J. Phys. Chem., 2011, 115C: 4726
[13] Qiu R, Zhang D, Wang P.Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition[J]. Corros. Sci., 2013, 66: 350
[14] Liu C S, Su F H, Liang J Z.Facile fabrication of a robust and corrosion resistant superhydrophobic aluminum alloy surface by a novel method[J]. RSC Adv., 2014, 4: 55556
[15] Badre C, Pauporté T, Turmine M, et al.Tailoring the wetting behavior of zinc oxide films by using alkylsilane self-assembled monolayers[J]. Superlattices Microstruct., 2007, 42: 99
[16] Sun T L, Feng L, Gao X F, et al.Bioinspired surfaces with special wettability[J]. Accounts Chem. Res., 2005, 38: 644
[17] Chen X H, Kong L H, Dong D, et al.Fabrication of functionalized copper compound hierarchical structure with bionic superhydrophobic properties[J]. J. Phys. Chem., 2009, 113C: 5396
[18] Nosonovsky M.Multiscale roughness and stability of superhydrophobic biomimetic interfaces[J]. Langmuir, 2007, 23: 3157
[19] Jin C D, Li J P, Han S J, et al.A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface[J]. Appl. Surf. Sci., 2014, 320: 322
[20] Nishino T, Meguro M, Nakamae K, et al.The lowest surface free energy based on-CF3 alignment[J]. Langmuir, 1999, 15: 4321
[21] Wu X D, Zheng L J, Wu D.Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route[J]. Langmuir, 2005, 21: 2665
[22] Tian H, Yang T S, Chen Y Q.Fabrication and characterization of superhydrophobic thin films based on TEOS/RF hybrid[J]. Appl. Surf. Sci., 2009, 255: 4289
[23] Li H J, Wang X B, Song Y L, et al.Super-“amphiphobic” aligned carbon nanotube films[J]. Angew. Chem.-Int. Edit., 2001, 40: 1743
[24] Nicolas M, Guittard F, Géribaldi S.Synthesis of stable super water- and oil-repellent polythiophene films[J]. Angew. Chem.-Int. Edit., 2006, 45: 2251
[25] Feng L, Li S H, Li Y S, et al.Super-hydrophobic surfaces: From natural to artificial[J]. Adv. Mater., 2002, 14: 1857
[26] Zhu X T, Zhang Z Z, Xu X H, et al.Facile fabrication of a superamphiphobic surface on the copper substrate[J]. J. Colloid Interface Sci., 2012, 367: 443
[27] Li H, Rong S R, Liu E Y, et al.Fabrication and characterization of bionic amphiphobic functional surface on X70 pipeline steel[J]. Microsyst. Technol., 2015, 21: 2003
[28] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40: 546
[29] Wenzel R N.Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28: 988
[30] Gao L C, McCarthy T J. Ionic liquids are useful contact angle probe fluids[J]. J. Am. Chem. Soc., 2007, 129: 3804
[31] Xie Q, Xu J, Feng L, et al.Facile creation of a super-amphiphobic coating surface with bionic microstructure[J]. Adv. Mater., 2004, 16: 302
[32] Wang P, Zhang D, Qiu R, et al.Super-hydrophobic film prepared on zinc and its effect on corrosion in simulated marine atmosphere[J]. Corros. Sci., 2013, 69: 23
[33] Song J L, Xu W J, Lu Y, et al.Fabrication of superhydrophobic surfaces on Mg alloy substrates via primary cell corrosion and fluoroalkylsilane modification[J]. Mater. Corros., 2013, 64: 979
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[8] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[9] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[10] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[12] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[13] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[14] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[15] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.