Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 221-226    DOI: 10.11902/1005.4537.2016.018
  本期目录 | 过刊浏览 |
原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究
韩帅豪1,岑宏宇1,陈振宇1,2(),邱于兵2,郭兴蓬1,2
1 华中科技大学化学与化工学院 材料化学与服役失效湖北省重点实验室 武汉 430074
2 华中科技大学化学与化工学院 能量转换与存储材料化学教育部重点实验室 武汉 430074
Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2
Shuaihao HAN1,Hongyu CEN1,Zhenyu CHEN1,2(),Yubing QIU2,Xingpeng GUO1,2
1 Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(2583 KB)   HTML
摘要: 

采用动态失重挂片、高温高压电化学测试、接触角测试及扫描电镜等手段,在80 ℃、2.5 MPa CO2条件下模拟饱和CO2油田采出水,研究原油与高压CO2共存条件下咪唑啉缓蚀剂对N80钢的缓蚀作用。结果表明:在含有咪唑啉缓蚀剂的腐蚀介质中加入原油后,电极的开路电位有所增加,电极的电荷传递电阻显著变大,碳钢对水的润湿性明显降低,缓蚀剂在金属表面覆盖更完整,原油显著增强了咪唑啉缓蚀剂的缓蚀性能。

关键词 CO2腐蚀咪唑啉缓蚀剂N80钢原油    
Abstract

Effect of crude oil on the inhibition behavior of imidazoline inhibitor were illustrated by dynamic mass loss method, electrochemical test, contact angle measurement, scanning electron microscopy etc. The oilfield produced water was simulated in the presence of CO2 under pressure of 2.5 MPa at 80 ℃, then in the above corrosive medium the corrosion inhibition performance of imidazoline corrosion inhibitor for N80 steel was assessed. The results showed that the open circuit potential and charge transfer resistance of the carbon steel increased when adding crude oil into the corrosive medium which contained imidazoline corrosion inhibitor. It is also found that the wettability of carbon steel surface against water was reduced obviously and the coverage of the inhibitor film became more complete, whilst the inhibition efficiency increased greatly after introducing crude oil into the oilfield produced water.

Key wordsCO2 corrosion    imidazoline corrosion inhibitor    N80 steel    crude oil
收稿日期: 2016-01-25     
基金资助:国家自然科学基金 (51571098)

引用本文:

韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
Shuaihao HAN, Hongyu CEN, Zhenyu CHEN, Yubing QIU, Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 221-226.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.018      或      https://www.jcscp.org/CN/Y2017/V37/I3/221

Condition CO2 pressureMPa Corrosion ratemma-1
Imidazoline only 0.5 0.151
1.5 0.237
2.5 0.299
Imidazoline+crude oil 0.5 0.041
1.5 0.052
2.5 0.072
表1  在不同CO2分压下N80钢的失重实验结果 (80 ℃)
Condition Temperature℃ Corrosion rate mma-1
Imidazoline only 40 0.172
60 0.251
80 0.299
Imidazoline+crude oil 40 0.055
60 0.062
80 0.072
表2  在不同温度下N80钢的失重实验结果 (2.5 MPa)
图1  在不同条件下N80钢的极化曲线 (80 ℃, 2.5 MPa)
Condition Ecorr
mV
Icorr
mAcm-2
ba
mVdec-1
bc
mVdec-1
η
%
Blank -701 3.74 175.69 343.66 ---
Crude oil -689 3.08 162.46 268.58 17.6
Imidazoline -667 0.23 89.64 213.04 93.8
Imidazoline+crude oil -644 0.05 60.98 237.96 98.7
表3  从图1中的极化曲线计算得到的电化学参数 (80 ℃, 2.5 MPa)
图2  在不同条件下N80钢的电化学阻抗谱 (80 ℃, 2.5 MPa)
图3  电化学阻抗谱等效电路模型
Condition RsΩcm2 CPEct-T
mFcm-2
CPEct-P Rct
Ωcm2
RL
Ωcm2
L
Hcm2
CPEf-T
mFcm-2
CPEf-P Rf
Ωcm2
Blank 2.876 1.5984 0.89 11.42 33.09 156.2 --- --- ---
Crude oil 3.275 1.6041 0.87 14.79 45.97 179.2 --- --- ---
Imidazoline 3.35 0.270 0.85 289.1 --- --- 7.97 0.73 116.5
Imidazoline+crude oil 4.48 0.213 0.80 421.7 --- --- 7.87 0.77 223.6
表4  N80钢的电化学阻抗谱拟合结果
图4  在不同条件下N80钢表面水滴的形貌图
图5  在不同条件下N80钢的腐蚀形貌 (80 ℃, 2.5 MPa)
[1] Zhang H H, Pang X L, Zhou M, et al.The behavior of pre-corrosion effect on the performance of imidazoline-based inhibitor in 3wt.%NaCl solution saturated with CO2[J]. Appl. Surf. Sci., 2015, 356: 63
[2] Chen Y, Sun D B, Lu Y H, et al.Research of CO2 corrosion behavior of 20# steel in gas well solution containing formic acid[J]. Procedia Eng., 2012, 27: 1544
[3] Liu Y C, Zhang B, Zhang Y L, et al.Electrochemical polarization study on crude oil pipeline corrosion by the produced water with high salinity[J]. Eng. Fail. Anal., 2016, 60: 307
[4] Wu Q L, Zhang Z H, Dong X M, et al.Corrosion behavior of low-alloy steel containing 1% chromium in CO2 environments[J]. Corros. Sci., 2013, 75: 400
[5] Lin Y H, Zhu D J, Zeng D Z, et al.Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions[J]. Corros. Sci., 2013, 74: 13
[6] Pfennig A, Wiegand R, Wolf M, et al.Corrosion and corrosion fatigue of AISI 420C (X46Cr13) at 60 ℃ in CO2-saturated artificial geothermal brine[J]. Corros. Sci., 2013, 68: 134
[7] Zhang X Y, Di C, Lei L C, et al.Corrosion and Control of CO2 [M]. Beijing: Chemical Industry Press, 2000: 15
[7] (张学元, 邸超, 雷良才等. 二氧化碳腐蚀与控制 [M]. 北京: 化学工业出版社, 2000: 15)
[8] Smart J S.A review of erosion corrosion in oil and gas production [A]. Corrosion/1990[C]. Houston, TX: NACE, 1990
[9] Nam N D, Bui Q V, Mathesh M, et al.A study of 4-carboxyphenylboronic acid as a corrosion inhibitor for steel in carbon dioxide containing environments[J]. Corros. Sci., 2013, 76: 257
[10] Zhao J M, Chen G H.The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution[J]. Electrochim. Acta, 2012, 69: 247
[11] Rodríguez-Valdez L M, Villamisar W, Casales M, et al. Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl[J]. Corros. Sci., 2006, 48: 4053
[12] Zhang X Y, Wang F P, He Y F, et al.Study of the inhibition mechanism of imidazoline amide on CO2 corrosion of Armco iron[J]. Corros. Sci., 2001, 43: 1417
[13] Okafor P C, Liu X, Zheng Y G.Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution[J]. Corros. Sci., 2009, 51: 761
[14] Heuer J K, Stubbins J F.Microstructure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow[J]. Corrosion, 1998, 54: 566
[15] Craig B D.Corrosion in oil/water systems[J]. Mater. Perform., 1996, 35: 61
[16] Rincon H, Hernandez S, Salazar J, et al.Effect of the water/oil ratio on the SCCC susceptibility of high strength OCTG carbon steel [A]. Corrosion/99[C]. San Antonio, Texas: NACE, 1999: 602
[17] Efird K D, Smith J L, Blevins S.The crude oil effect on steel corrosion: wetability preference and brine chemistry [A]. Corrosion/ 2004[C]. New Orleans, Louisiana: NACE, 2004: 04366
[18] Ayello F, Robbins W, Richter S, et al.Crude oil chemistry effects on inhibition of corrosion and phase wetting [A]. Corrosion/2011[C]. Houston: NACE, 2011: 11060
[19] Castillo M, Vera J R, Rincon H, et al.Protective properties of crude oils in CO2 and H2S corrosion [A]. Corrosion/2000[C]. Orlando, Florida: NACE, 2000: 00005
[20] Wu D W, Tang S F, Zhang D C, et al.Optimization of synthesis conditions of oleic acid imidazoline corrosion inhibitor[J]. Adv. Fine Petrochem., 2009, 10(1): 48
[20] (吴大伟, 唐善法, 张大椿等. 油酸咪唑啉缓蚀剂合成条件的优选设计[J]. 精细石油化工进展, 2009, 10(1): 48)
[21] Li X L.A study on low fluctuation pump by using hydraulic filter [D]. Xi'an: Xi'an Shiyou University, 2013
[21] (李小龙. 原油流动性改进研究 [D]. 西安: 西安石油大学, 2013)
[22] Zhang G A, Zeng Y, Guo X P, et al.Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment[J]. Corros. Sci., 2012, 65: 37
[1] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[2] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[3] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[4] 程庆利,陶彬,刘栓,刘全桢,张卫华,田松柏,王立平. 原油沉积水对Q235B碳钢的腐蚀影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 126-134.
[5] 张艳飞, 陈旭, 何川, 陈宇, 王冠夫, 张玉刚. 原油性质对16Mn钢腐蚀行为影响灰关联分析[J]. 中国腐蚀与防护学报, 2015, 35(1): 43-48.
[6] 黄本生, 尹文锋, 王小红, 施宜君. 常减压装置常用钢材在高温原油馏分中的腐蚀研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 377-382.
[7] 赵景茂 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的
缓蚀协同作用机理
[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
[8] 刘玉,李焰. 天然气管线钢CO2腐蚀研究进展[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[9] 赵景茂,李俊. 含羟基双子表面活性剂在CO2饱和盐水溶液中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(4): 349-352.
[10] 侯赞,周庆军,王起江,张忠铧,齐慧滨,王俊. 13Cr系列不锈钢在模拟井下介质中的CO2腐蚀研究[J]. 中国腐蚀与防护学报, 2012, 32(4): 300-305.
[11] 艾俊哲,梅平,郭兴蓬. 饱和CO2盐水溶液中咪唑啉缓蚀剂在碳钢表面上的吸附行为[J]. 中国腐蚀与防护学报, 2011, 31(4): 305-308.
[12] 鲁照玲,郭兴蓬. 月桂酸在CO2饱和盐水溶液中缓蚀行为和机理研究[J]. 中国腐蚀与防护学报, 2010, 30(6): 475-480.
[13] 王彬;张静;杜敏. 咪唑啉类缓蚀剂对含饱和CO2的模拟油田采出液中Q235-A钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2010, 30(1): 16-20.
[14] 俞芳 高克玮 路民旭. 流动状态下X65管线钢CO2腐蚀产物膜结构和力学性能的评价[J]. 中国腐蚀与防护学报, 2009, 29(6): 401-404.
[15] 朱世东 尹志福 白真权 魏建峰 周树根 田伟. 温度对P110钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(6): 493-498.