Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (1): 82-88    DOI: 10.11902/1005.4537.2013.041
  本期目录 | 过刊浏览 |
过量CO2气氛环境下青铜表面生成孔雀石锈蚀产物的模拟研究
吴涛涛1, 孟威威1, 鲍志荣1, 李洋2,3, 潘春旭1,3()
1. 武汉大学物理科学与技术学院和电子显微镜中心 武汉 430072
2. 武汉大学历史学院 武汉 430072
3. 武汉大学科技考古研究中心 武汉 430072
Formation of Malachite Rusts on Bronze in Environments with Excess of CO2
WU Taotao1, MENG Weiwei1, BAO Zhirong1, LI Yang2,3, PAN Chunxu1,3()
1. School of Physics and Technology and Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
2. School of History, Wuhan University, Wuhan 430072, China
3. Center for Archaeometry, Wuhan University, Wuhan 430072, China
全文: PDF(2531 KB)   HTML
摘要: 

利用一种新型的盐溶液-蒸汽模拟技术,在过量CO2的气氛环境中模拟生成孔雀石等锈蚀产物,并利用光学显微镜、扫描电子显微镜、能谱仪、X射线衍射仪、Raman光谱仪等表征仪器,系统表征了锈蚀产物的微观组织和化学成分等。研究分析了在不同过量CO2的气氛环境下,青铜表面生成锈蚀产物的特征及其生长机理,为古代青铜器的保护提供了科学依据。

关键词 青铜孔雀石锈蚀产物CO2气氛环境    
Abstract

The formation of rusts consisted mainly of malachite on bronze was simulated with a new process, by which the corrosion test of bronze samples was performed in controllable environments with excess of CO2 contents, water vapor and chlorine ions. The chemical composition, microstructure and phase constituents of the corrosion products were characterized by means of optical microscopy, scanning electron microscope (SEM) with energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and Raman microscopy. The results revealed that the characteristics of corrosion products were related with the content of CO2 and H2O in the environment. The growth mechanism of the rusts in these environments was discussed and the suggestions for preservation of the ancient bronzes were proposed.

Key wordsbronze    malachite    corrosion product    CO2 atmosphere environment
收稿日期: 2013-04-01     
ZTFLH:  TG172.6  
基金资助:国家大学生创新创业计划项目 (111048620);武汉市文化局项目资助
作者简介: null

吴涛涛,男,1990年生,本科生,研究方向为文物保护与科技考古

引用本文:

吴涛涛, 孟威威, 鲍志荣, 李洋, 潘春旭. 过量CO2气氛环境下青铜表面生成孔雀石锈蚀产物的模拟研究[J]. 中国腐蚀与防护学报, 2014, 34(1): 82-88.
Taotao WU, Weiwei MENG, Zhirong BAO, Yang LI, Chunxu PAN. Formation of Malachite Rusts on Bronze in Environments with Excess of CO2. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 82-88.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.041      或      https://www.jcscp.org/CN/Y2014/V34/I1/82

图1  试样I表面锈蚀产物的光学显微像和SEM像
图2  试样I表面锈蚀产物的XRD谱
图3  试样I表面锈蚀产物的Raman光谱在100~1700和3200~3700 cm-1范围内的测试结果
图4  试样I表面锈蚀产物的Raman光谱在100~700 cm-1范围内的测试结果
图5  试样II表面锈蚀产物的光学显微像和SEM像
图6  试样II表面锈蚀产物的XRD谱
图7  试样II表面锈蚀产物的Raman光谱在100~1700和3200~3700 cm-1范围内的测试结果
图8  试样II表面锈蚀产物的Raman光谱在100~700 cm-1范围内的测试结果
图9  试样III表面锈蚀产物的光学显微像和SEM像
图10  试样III表面锈蚀产物的XRD谱
图11  试样III表面锈蚀产物的Raman光谱在100~1700和3200~3700 cm-1范围内的测试结果
[1] Chase T. Chinese Bronzes: Casting, Finishing, Patination and Corrosion. In: Scott D A, Podany J, Considine B, eds. Ancient and Historic Metals [M]. California, USA: The Getty Conservation Institute, 1994
[2] Robbiola L, Blengino J M, Fiaud C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys[J]. Corros. Sci., 1998, 40(12): 2083-2111
[3] Scott D A. Copper and Bronze in Art: Corrosion, Colorants, Conservation [M]. Los Angeles: Getty Conservation Institute, 2002
[4] McCann L I, Trentelman K, Possley T, et al. Corrosion of ancient chinese bronze money trees studied by Raman microscopy[J]. J. Raman Spectrosc., 1999, 30: 121-132
[5] Li Y P, Cheng X L, Cheng Y B, et al. The corrosion testing of buried bronze atarchaeological sites[J]. Archaeol. Cult. Relics, 2006, 6: 95-98
[5] (李艳萍, 成小林, 程玉冰等. 考古现场青铜样品土壤埋藏腐蚀实验初探[J]. 考古与文物, 2006, 6: 95-98)
[6] Hassairi H, Bousselmi L, Triki E, et al. Assessment of the interphase behaviour of two bronze alloys in archaeological soil[J]. Mater. Corros., 2007, 58(2): 121-128
[7] Li T. The corrosion study of ancient bronzes excavated from Penglai, Shandong Province [D]. Hefei: University of Science and Technology of China, 2007
[7] (李涛. 山东蓬莱出土古代青铜器的腐蚀研究 [D]. 合肥: 中国科学技术大学, 2007)
[8] Bernardi E, Chiavari C, Lenza B, et al. The atmospheric corrosion of quaternary bronzes: the leaching action of acid rain[J]. Corros. Sci., 2009, 51: 159-170
[9] Bernardi E, Bowden D J, Brimblecombe P, et al. The effect of uric acid on outdoor copper and bronze[J]. Sci. Total Environ., 2009, 407: 2383-2389
[10] Marušić K, Otmačić-Ćurković H, Horvat-Kurbegović Š, et al. Comparative studies of chemical and electrochemical preparation of artificial bronze patinas and their protection by corrosion inhibitor[J]. Electrochim. Acta, 2009, 54: 7106-7113
[11] Novakovic J, Papadopoulou O, Vassiliou P, et al. Plasma reduction of bronze corrosion developed under long-term artificial aging[J]. Anal. Bioanal. Chem., 2009, 395: 2235-2244
[12] Wang N, He J Q, Sun S Y, et al. Bronze samples in various typical electrolytes[J]. Sci. Conserv. Archaeol., 2007, 19(4): 45-48
[12] (王宁, 何积铨, 孙淑云等. 模拟青铜器样品在典型电解质溶液中的电化学行为研究[J]. 文物保护与考古科学, 2007, 19(4): 45-48)
[13] Souissi N, Bousselmi L, Khosrof S, et al. Electrochemical behaviour of an archaeological bronze alloy in various aqueous media: new method for understanding artifacts preservation[J]. Mater. Corros., 2003, 54: 318-325
[14] Souissi N, Bousselmi L, Khosrof S, et al. Voltammetric behaviour of an archaeological bronze alloy in aqueous chloride media[J]. Mater. Corros., 2004, 55(4): 284-291
[15] Sidot E, Souissi N, Bousselmi L, et al. Study of the corrosion behaviour of Cu-10Sn bronze in aerated Na2SO4 aqueous solution[J].Corros. Sci., 2006, 48: 2241-2257
[16] Hassairi H, Bousselmi L, Triki E. Bronze degradation processes in simulating archaeological soil media[J]. J. Solid State Electrochem., 2010, 14: 393-401
[17] Wang J L, Xu C C, Lv G C. Chemical behavior of mass transfer at the bronze/environment interface[J]. Chin. J. Mater. Res., 2004, 18(3): 244-250
[17] (王菊琳, 许淳淳, 吕国诚. 三元青铜/环境界面上物质转移的化学行为研究[J]. 材料研究学报, 2004, 18(3): 244-250)
[18] Wang J L, Xu C C. Chemical behavior of bronze local ized corrosion in soil[J]. J. Chem. Ind. Eng.(China), 2004, 55(7): 1135-1139
[18] (王菊琳, 许淳淳. 青铜在土壤中局部腐蚀过程的化学行为[J]. 化工学报, 2004, 55(7): 1135-1139)
[19] Wang J L, Xu C C, Lv G C. Formation of CuCl and regenerated Cu crystals on bronze surfaces in neutral and acidic media[J]. Appl. Surf. Sci., 2006, 252: 6294-6303
[20] Tang Q, Wang J L, Ma J Y. Morphology change and elements migration of bronze with high tin content after soil corrosion[J]. Chin. J. Nonferrous Met., 2011, 21(12): 3175-3181
[20] (汤琪, 王菊琳, 马菁毓. 土壤腐蚀过程中高锡青铜的形貌变化和元素迁移[J]. 中国有色金属学报, 2011, 21(12): 3175-3181)
[21] Scott D A. Bronze disease: a review of some chemical problems and the role of relative humidity[J]. J. Am. Inst. Conserv., 1990, 29(2): 193-206
[22] Li Y, Bao Z R, Wu T T, et al. Specific corrosion product on interior surface of a bronze wine vessel with loop-handle and its growth mechanism, Shang Dynasty, China[J]. Mater. Charact., 2012, 68: 88-93
[23] Constantinides I, Adriaens A, Adams F, et al. Surface characterization of artificial corrosion layers on copper alloy reference materials[J]. Appl. Surf. Sci., 2002, 189(1/2): 90-101
[24] Frost R L, Martens W N, Rintoul L, et al. Raman spectroscopic study of azurite and malachite at 298 and 77 K[J]. J. Raman Spectrosc., 2002, 33: 252-259
[25] Bouchard M, Smith D C. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass[J]. Spectrochim. Acta, 2003, 59A: 2247-2266
[26] Burgio L, Clark R J H. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation[J]. Spectrochim. Acta, 2001, 57A: 1491-1521
[27] Sheng L. Study on removing the powdery rust of bronze on by oxidative obturation method [D]. Xi'an: Northwest University, 2008
[27] (沈璐. 青铜器粉状锈氧化封闭法工艺研究 [D]. 西安: 西北大学, 2008)
[28] Sun X Q. Study on the corrosion mechanisms and the conservation of bronzes[J]. World Antiq., 2002, 53(6): 56-60
[28] (孙晓强. 青铜器的腐蚀与保护探讨[J]. 文物世界, 2002, 53(6): 56-60)
[29] Fu H T, Li Y, Wei W J. Bronze artifacts preservation and application of AMT[J]. Corros. Sci. Prot. Technol., 2002, 14(1): 36-37
[29] (付海涛, 李瑛, 魏无际. 古代青铜文物保护研究现状及AMT的应用[J]. 腐蚀科学与防护技术, 2002, 14(1): 36-37)
[30] Yan D F, Qin Y, Chen X, et al. Thermal analysis of the chloride in corrosion products on bronze[J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 64-66
[30] (晏德付, 秦颍, 陈茜等. 青铜器氯化物腐蚀产物的热分析[J]. 中国腐蚀与防护学报, 2012, 32(1): 64-66)
[1] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[2] 和佳乐, 王菊琳. 初始pH值和Cl-浓度对CuCl水解的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 397-402.
[3] 程旭东,孙连方,曹志烽,朱兴吉. 钢筋非均匀锈蚀导致的混凝土保护层锈胀开裂过程分析[J]. 中国腐蚀与防护学报, 2015, 35(3): 257-264.
[4] 万 俐 杜 伟 李佳佳 丁 毅 陈步荣. 十八硫醇自组装膜对青铜-银电偶腐蚀的
抑制作用
[J]. 中国腐蚀与防护学报, 2013, 33(3): 245-250.
[5] 晏德付,秦颍,陈茜,黄凰. 青铜器氯化物腐蚀产物的热分析[J]. 中国腐蚀与防护学报, 2012, 32(1): 64-66.
[6] 黄凰,秦颍,徐劲松. 湖北鄂州出土青铜器锈蚀状况分析[J]. 中国腐蚀与防护学报, 2011, 31(1): 76-80.
[7] 赵羽习,任海洋. 基于固结试验和接触理论分析的铁锈力学性能[J]. 中国腐蚀与防护学报, 2010, 30(5): 383-390.
[8] 凡小盼; 王昌燧; 金普军 . 热处理对铅锡青铜耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(2): 112-115 .
[9] 和玲; 姜宝莲; 甄刚 . 汉代五铢钱币腐蚀特性研究[J]. 中国腐蚀与防护学报, 2007, 27(5): 303-308 .
[10] 冯丽婷; 刘清; 包祥; 冯绍彬 . 青铜器加速腐蚀的多孔氧电极研究[J]. 中国腐蚀与防护学报, 2006, 26(3): 184-187 .
[11] 张展适; 陈少华; 陈障茹; 刘月妙 . 青铜文物腐蚀过程的模拟研究[J]. 中国腐蚀与防护学报, 2006, 26(2): 94-99 .
[12] 王菊琳; 许淳淳; 于淼 . 青铜文物表面腐蚀产物的组成及深度分布研究[J]. 中国腐蚀与防护学报, 2005, 25(3): 163-166 .
[13] 于辉; 董飒英; 黄国胜 . 铝青铜在3.5%NaCl溶液中的脱成份腐蚀行为[J]. 中国腐蚀与防护学报, 2003, 23(6): 345-349 .
[14] 韩忠; 江伟明; 林海潮 . 海水管路系统中铝青铜腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2000, 20(3): 188-192 .
[15] 金韬;王昌燧;陈志文;李凡庆. 青铜表面SnO_2保护膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 1997, 17(2): 111-115.