Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (6): 507-514    
  研究论文 本期目录 | 过刊浏览 |
钛基DSA阳极在电镀铬工艺中的应用研究
宋 琴1,2 武俊伟1,2 张 辉1,2 杜翠薇3
1. 哈尔滨工业大学深圳研究生院材料科学与工程学院 深圳 518055;
2. 深圳市新材料技术重点实验室 深圳 518055;
3. 北京科技大学腐蚀与防护中心 北京 100083
Performance of Ti-based Dimensionally Stable Anode for Chromium Plating Application
SONG Qin1,2, WU Junwei1,2, ZHANG Hui1,2, DU Cuiwei3
1. School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China;
2. Shenzhen New Material Technology Key Laboratory, Shenzhen 518055, China;
3. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083,China
全文: PDF(3183 KB)  
摘要: 通过Hull槽电解、电化学特性和长期稳定性测试的方法研究了DSA (IrO2,Ta2O5),DSA (IrO2,Pt) 阳极和PbSn合金阳极在电镀铬溶液中的性能,并进行对比分析。结果表明,钛基DSA阳极真实活性比表面远远大于其几何表面;在镀铬溶液中表现出较低的析氧电位和较好的电催化活性,尤其是DSA (IrO2,Pt) 阳极在高电流密度下表现出更好的电催化活性;但是由于溶液中的F-添加剂侵蚀Ti基体使得钛基涂层阳极在镀铬溶液中的稳定性和寿命均比PbSn合金阳极短。
关键词 DSA阳极析氧电位催化活性稳定性    
Abstract:Ti-based oxide-coated anodes have been widely utilized in trivalent chromium solution, but few in hexavalent chromium plating process. In this paper, by means of Hull cell, electrochemical measurement, long term stability test, the performance of DSA (IrO2, Ta2O5) and DSA (IrO2, Pt) anode in hexavalent chromium process is studied in comparison with tin-lead alloy anode. The results show that DSA anode has larger active surface area, lower oxygen evolution potential and better electrocatalytic activity in chromium solution, especially DSA (IrO2, Pt) anode has the best electrocatalytic activity at high current density region. However, due to the presence of F- additives in plating bath the Ti-based coated anodes exhibit poorer stability and shorter lifetime compared to the lead-tin anode.
Key wordsDSA anode    oxygen evolution potential    catalytic activity    stability
收稿日期: 2013-03-14     
ZTFLH:  TQ153.1  
通讯作者: 武俊伟,E-mail:Junwei.wu@hitsz.edu.cn   
作者简介: 宋琴,女,1988年生,硕士生,研究方向为腐蚀与电化学

引用本文:

宋琴, 武俊伟, 张辉, 杜翠薇. 钛基DSA阳极在电镀铬工艺中的应用研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 507-514.
. Performance of Ti-based Dimensionally Stable Anode for Chromium Plating Application. Journal of Chinese Society for Corrosion and protection, 2013, 33(6): 507-514.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I6/507

[1] Zhang Z X, Zhao G P, Luo X J, et al. Introduction to Titanium Electrodes [M]. Beijing: Metallurgical Industry Press, 2008: 323-326
(张招贤, 赵国鹏, 罗小军等. 钛电极学导论 [M]. 北京: 冶金工业出版社, 2008: 323-326)
[2] Huang Y T, Peng Q. Progress in the study of the Ti-based metal oxide anodes [J]. Total Corros. Cont., 2006, 20(1): 10-12
(黄运涛, 彭乔. 钛基金属氧化物阳极的研究进展 [J]. 全面腐蚀控制, 2006, 20(1): 10-12)
[3] Hao C Q. Application of the Ti-Anode in plating industry [J]. Printed Circuit Inf., 2006, (3): 22-24
(郝成强. DSA钛阳极在电镀行业中的应用 [J]. 印制电路信息, 2006, (3): 22-24)
[4] Meng H M, Li J H, Yu H Y, et al. Electrolysis of organic pollutants in wastewater using an IrO2-Ta2O5/Ti electrode [J]. J. Univ. Sci. Technol. Beijing, 2003, 25(5): 405-409
(孟惠民, 李金鸿, 俞宏英等. 贵金属氧化物电极电解处理有机废水 [J]. 北京科技大学学报, 2003, 25(5): 405-409)
[5] Hoare J P. On the mechanisms of chromium electrodeposition [J]. Electrochem. Soc., 1979, 126(2): 190-199
[6] Zhan Y T, Chen W L. Anodic process of tin-lead alloy in chrome plaing [J]. Mater. Prot., 1986, (4): 35-36
(詹益腾, 陈文亮. 电镀铅锡合金阳极在镀铬中的阳极过程 [J]. 材料保护, 1986, (4): 35-36)
[7] Hu R N, Chen S Q. Practical Chromium Plating Technology [M]. Beijing: National Defense Industry, 2005: 1-4
(胡如南, 陈松祺. 实用镀铬技术 [M]. 北京: 国防工业出版社, 2005: 1-4)
[8] Pavlovi? M G, Dekanski A. On the use of platinized and activated titanium anodes in some electrodeposition processes [J]. J. Solid State Electrochem., 1997, 1: 208-214
[9] Hai B X, Yong H L, Chun H L. A novel IrO2 electrode with Iridium-titanium oxide interlayers from a mixture of TiN nanoparticle and H2IrCl6 solution [J]. J. Appl. Electrochem., 2010, 40(4): 719-727
[10] Profeti D, Lassali T A F, Oliv P. Preparation of Ir0.3Sn(0.7-x)TixO2 electrodes by the polymeric precursor method: characterization and lifetime study [J]. J. Appl. Electrochem., 2006, 36: 883-888
[11] Li G T, Zhu M Y, Chen J, et al. Production and contribution of hydroxy radicals between DSA anode and water interface [J]. Environ. Sci., 2011, 23(5): 744-748
[12] Jiang J L, Tang D. Study on preparation of Ti based Ir/Ta coated anode [J]. Heat Treat. Met. Abroad, 2005, 26(4): 30-34
(江嘉鹭, 唐电. 铱钽涂层钛阳极的制备工艺研究 [J]. 国外金属热处理, 2005, 26(4): 30-34)
[13] Zhang J Q. Electrochemical Measurement Technology [M]. Beijing: Chemical Industry Press, 2010: 84-134
(张鉴清. 电化学测试技术 [M]. 北京: 化学工业出版社, 2010: 84-134)
[14] Ju H, Pan H B, Chen F Y. The effect of Ta surface treatment on the microstructure and behavior of oxygen evolution of Ti based IrO2 anode [J]. Rare Met. Mater. Eng., 1993, 22(1): 59-62
(鞠鹤, 潘会波, 陈凤云. 钽处理对钛基IrO2电极组织及放氧行为的影响 [J]. 稀有金属材料与工程,1993, 22(1): 59-62)
[15] Fu X C, Shen W X, Yao T Y, et al. Physical Chemistry [M]. Beijing: Higher Education Press, 2006: 117-119
(傅献彩, 沈文霞, 姚天杨等. 物理化学 [M]. 北京: 高等教育出版社, 2006: 117-119)
[16] Hu J M, Meng H M, Zhang J Q, et al. Aging performances of Ti based IrO2/Ta2O5 anode in sulfuric acid during electrolysis [J]. Acta Phys.- Chim. Sin., 2002, 18(1): 14-20
(胡吉明, 孟惠民, 张鉴清等. Ti基IrO2/Ta2O5阳极在H2SO4溶液中的电解时效行为 [J]. 物理化学学报, 2002, 18(1): 14-20)
[1] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[2] 李庆鹏,许茜,刘建国,严川伟,张亮,殷跃军,韩长智. 水性无铬达克罗涂料的制备与性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 559-565.
[3] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[4] 肖伟,单大勇,陈荣石. 熔模铸造ZA93镁合金的化学镀镍工艺研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 90-94.
[5] 邢琳琳,郑雁军,崔立山,孙茂虎,邵明增,卢贵武. 水蒸汽影响氧化铝膜生长的研究新进展[J]. 中国腐蚀与防护学报, 2011, 31(6): 409-413.
[6] 李辉 . 钢筋混凝土阴极保护用RuMn/Ti阴极的电化学性能[J]. 中国腐蚀与防护学报, 2004, 24(5): 280-283 .
[7] 王家军;孙榆芳;叶锐曾. Ti-N扩散障碍膜的组织结构及高温热稳定性[J]. 中国腐蚀与防护学报, 1994, 14(3): 247-251.