Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (5): 400-406    
  研究报告 本期目录 | 过刊浏览 |
横向梯度温度场下热障涂层的失效分析
陈琛1,2, 郭洪波2, 宫声凯2
1. 中航商用航空发动机有限责任公司 上海 200241;
2. 北京航空航天大学材料科学与工程学院 北京 100083
Failure Analysis of Thermal Barrier Coating Being Subjected to Lateral Thermal Gradient on Surface
CHEN Chen1,2, GUO Hongbo2, GONG Shengkai2
1. AVIC Commercial Aircraft Engine Co. Ltd., Shanghai 200241, China;
2. School of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
全文: PDF(1072 KB)  
摘要: 采用热障涂层服役环境性能实验模拟器,利用电化学阻抗谱针对横向梯度温度场条件下的热障涂层结构变化开展研究,并结合有限元方法对热力耦合作用下热障涂层的失效机理进行了分析,发现当管状试样处于两端约束受力状态下,加热区边缘为涂层易发生开裂部位。
关键词 热障涂层温度梯度失效模式电化学阻抗有限元    
Abstract:Due to the combustion chamber usually provide flam with a non-uniform temperature field, therefore, a lateral temperature gradient should exist on the surface of nozzle guide-vanes for a gas turbine. In the present article, the structure evolution of thermal barrier coatings on nozzle guide-vanes was examined under the action of the above mentioned lateral temperature gradient by means of a home madeinfrared thermal shock testing system combined with impedance spectroscopy measurement. Meanwhile, the failure analysis of thermal barrier coatings being subjected to thermo-mechanical loading was also studied using finite element analysis. It's found that with constrain at both ends of a tube, cracks are apt to initiate at the edge of a heated area.
Key wordsthermal barrier coating    temperature gradient    failure analysis    electrochemical
impedance spectroscopy
   finite element
    
ZTFLH:  TG146  

引用本文:

陈琛, 郭洪波, 宫声凯. 横向梯度温度场下热障涂层的失效分析[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
CHEN Chen, GUO Hongbo, GONG Shengkai. Failure Analysis of Thermal Barrier Coating Being Subjected to Lateral Thermal Gradient on Surface. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 400-406.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I5/400

[1] Sims C T, Stoloff N S, Hagel W C. Superalloys II [M]. New York: John Wiley and Sons, 1987
[2] Miller R A. Current status of thermal barrier coatings-An overview[J]. Surf. Coat. Technol., 1987, 30(1): 1-11
[3] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280-284
[4] Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28(9): 659-670
[5] Clarke D R, Levi C G. Materials design for the next generation thermal barrier coatings [J]. Ann. Rev. Mater. Res., 2003, 33: 383-417
[6] Acker K Van, De Buyser L , Celis J P, et al. Characterization of thin nickel electrocoatings by the low-incident-beam-angle diffraction method [J]. J. Appl. Crystall., 1994, 27: 56-66
[7] Zhang C X. Service environment simulation and performance evaluation for B-PVD thermal barrier coatings [D]. Beijing: Beijing University of Aeronautics and Astronautics, 2005
(张春霞. EB-PVD热障涂层服役环境性能的试验模拟与评价 [D]. 北京: 北京航空航天大学, 2005)
[8] Tzimas E, Mullejans H, Peteves S D, et al. Failure of thermal barrier coating systems under cyclic thermomechanical loading [J]. Acta Mater., 2000, 48(18/19): 4699-4707
[9] Baufeld B, Tzimas E, Hner P H, et al. Phase-angle effects on damage mechanisms of thermal barrier coatings under thermomechanicalfatigue [J]. Scr. Mater., 2001, 45(7): 859-865
[10] Peichl A, Beck T, Hringer O V. Behaviour of an EB-PVD thermal barrier coating system under thermal-mechanical fatigue loading[J]. Surf. Coat. Technol., 2003, 162(2/3): 113-118
[11] Baufeld B, Tzimas E, Müllejans H, et al. Thermal-mechanical fatigue of MAR-M 509 with a thermal barrier coating [J]. Mater. Sci. Eng., 2001, A315(1/2): 231-239
[12] Zhang C X, Zhou C G, Peng H, et al. Influence of thermal shock on insulation effect of nano-multilayer thermal barrier coatings [J]. Surf. Coat. Technol., 2007, 201(14): 6340-6344
[13] Peng H, Guo H B, Zhang C X, et al. Numerical Analysis of EB-PVD Thermal Barrier Coatings under Thermal-Mechanical Coupled Environment [J]. Mater. Sci. Forum, 2007, 546/549: 1795-1799
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[3] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[4] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[6] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[8] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[9] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[10] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[11] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] 姚望, 周和荣, 肖葵, 刘鹏洋, 但佳永, 吴润. 中性盐雾环境中DC06超深冲钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 241-247.
[13] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[14] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[15] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.