Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (5): 363-370    
  研究报告 本期目录 | 过刊浏览 |
铁还原细菌Shewanella algae生物膜对316L不锈钢腐蚀行为的影响
杜向前1,2,3, 段继周1, 翟晓凡1,2, 栾鑫1, 张杰1, 侯保荣1
1. 中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071;
2. 中国科学院大学 北京 100049;
3. 江苏中核华纬工程设计研究有限公司 南京 210019
Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms
DU Xiangqian1,2,3, DUAN Jizhou1, ZHAI Xiaofan1,2, LUAN Xin1, ZHANG Jie1, HOU Baorong1
1. Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Jiangsu China Nuclear Industry Huawei Engineering Design and Research Co., Ltd., Nanjing 210019, China
全文: PDF(2087 KB)  
摘要: 通过电化学阻抗谱、环阳极极化、扫描电镜和X射线能谱等方法研究了铁还原细菌Shewanella algae对316L不锈钢腐蚀行为的影响。电化学结果表明,Shewanella algae使不锈钢的腐蚀电位发生负移;在含该细菌的介质中,不锈钢表面的阻抗值先增大后减小,在第4 d达到最大,是初始阻抗值的260倍;不锈钢在无菌介质中的滞后环面积和特征电位区间(击穿电位与保护电位之差)小于其在有菌介质中的滞后环面积和特征电位区间,说明Shewanella algae对不锈钢点蚀的发生与发展起到抑制作用。观察到不锈钢表面为生物膜所覆盖,生物膜及代谢产物改变了不锈钢表面的元素组成和化学性质。从微生物膜氧消耗和电活性生物膜的角度,初步提出了Shewanella algae的腐蚀抑制机理。
关键词 316L不锈钢铁还原细菌Shewanellaalgae生物膜微生物腐蚀抑制    
Abstract:Microbiologically influenced corrosion of 316L stainless steel (316LSS) by iron-reducing bacteria (IRB) Shewanella algae was investigated by means of open circuit potential (OCP) measurement, electrochemical impedance spectroscopy (EIS) and cyclic anodic polarization curves, and scanning electron microscopy and energy dispersive X-ray spectroscopy for characterization of corrosion products. The results showed that after immersion in the IRB containing solution the free corrosion potential of 316LSS shifted negatively; the polarization resistance of 316LSS increased firstly, and then decreased; the presence of IRB reduced the hysteresis loop area of the cyclic anodic polarization curves and also the characteristic potential range of 316LSS, which indicated that IRB inhibited the initiation and propagation of pitting corrosion of 316LSS. The presence of IRB might be beneficial to the formation of biofilms on the surface of 316LSS exposed to in the solution, and therewith the chemical composition and property of the 316LSS surface might be changed by biofilms and metabolites, whilst which resulted in a stronger corrosion inhibition to the 316LSS immersed in the IRB containing solution.
Key words316L stainless steel    iron-reducing bacteria (IRB)    Shewanella algae biofilm    microbiologically influenced corrosion inhibition (MICI)
    
ZTFLH:  TG172.5  

引用本文:

杜向前, 段继周, 翟晓凡, 栾鑫, 张杰, 侯保荣. 铁还原细菌Shewanella algae生物膜对316L不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
DU Xiangqian, DUAN Jizhou, ZHAI Xiaofan, LUAN Xin, ZHANG Jie, HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 363-370.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I5/363

[1] Hamilton W A. Sulfate-reducing bacteria and anaerobic corrosion [J]. Annu. Rev. Microbiol., 1985, 39: 195-217
[2] Antony P, Chongdar S, Kumar P, et al. Corrosion of 2205 duplex stainless steel in chloride medium containing sulfate-reducing bacteria [J]. Electrochim. Acta, 2007, 52(12): 3985-3994
[3] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50(4): 1169-1183
[4] Duan J, Wu S, Zhang X, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54(1): 22-28
[5] Malard E, Kervadec D, Gil O, et al. Interactions between steels and sulphide-producing bacteria-Corrosion of carbon steels and low-alloy steels in natural seawater [J]. Electrochim. Acta, 2008, 54(1): 8-13
[6] Cetin D, Aksu M L. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp [J]. Corros. Sci., 2009, 51(8): 1584-1588
[7] Jayaraman A, Earthman J C, Wood T K. Corrosion inhibition by aerobic biofilms on SAE 1018 steel [J]. Appl. Microbiol. Biot., 1997, 47(1): 62-68
[8] Volkland H P, Harms H, Knopf K, et al. Corrosion inhibition of mild steel by bacteria [J]. Biofouling, 2000, 15(4): 287-297
[9] Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46(8): 1953-1967
[10] Chongdar S, Gunasekaran G, Kumar P. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochim. Acta, 2005, 50(24): 4655-4665
[11] Syrett B C, Arps P J, Earthman J C, et al. Corrosion control using regenerative biofilms (CCURB)-An update [A]. Corrosion in Refinery Petrochemical and Power Generation Plants [C]. Venice, 2000: 387-396
[12] Ornek D, Wood T K, Hsu C H, et al. Corrosion control using regenerative biofilms (CCURB) on brass in different media [J]. Corros. Sci., 2002, 44(10): 2291-302
[13] Arps P J, Xu L C, Green R M, et al. Field Evaluation of Corrosion Control Using Regenerative Biofilms (CCURB) [A]. CORROSION/2003 Houston [C]. TX, NACE International, 2003: 03714
[14] Jayaraman A, Cheng E T, Earthman J C, et al. Axenic aerobic biofilms inhibit corrosion of SAE1018 steel through oxygen depletion [J]. Appl. Microbiol. Biot., 1997, 48(1): 11-17
[15] Jayaraman A, Ornek D, Duarte D A, et al. Axenic aerobic biofilms inhibit corrosion of copper and aluminum [J]. Appl. Microbiol. Biot., 1999, 52(6): 787-790
[16] Nagiub A, Mansfeld F. Evaluation of microbiologically influenced corrosion inhibition using electrochemical noise analysis [J]. Corros. Sci., 2001, 43(11): 2001-2009
[17] Nagiub A, Mansfeld F. Evaluation of microbiologically influenced corrosion inhibition (MICI) with EIS and ENA [J]. Electrochim. Acta, 2002, 47(13/14): 2319-2333
[18] Ponmariappan S, Maruthamuthu S, Palaniappan R. Inhibition of Corrosion of Mild Steel by Staphylococcus sp [J]. Transa. SAEST, 2004, 39: 99-108
[19] Ornek D, Jayaraman A, Syrett B C, et al. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate [J]. Appl. Microbiol. Biot., 2002, 58(5): 651-657
[20] Ornek D, Wood T K, Hsu C H, et al. Pitting corrosion control of aluminum 2024 using protective biofilms that secrete corrosion inhibitors [J]. Corrosion, 2002, 58(9): 761-767
[21] Dubiel M, Hsu C H, Chien C C, et al. Microbial iron respiration can protect steel from corrosion [J]. Appl. Environ. Microb., 2002, 68(3): 1440-1445
[22] Lee A K, Newman D K. Microbial iron respiration: impacts on corrosion processes [J]. Appl. Microbiol. Biot., 2003, 62(2-3): 134-139
[23] Herrera L K, Videla H A. Role of iron-reducing bacteria in corrosion and protection of carbon steel [J]. Int. Biodeter. Biodegr., 2009, 63(7): 891-895
[24] Videla H A, Le B S, Panter C, et al. Mic of steels by iron reducing bacteria [A]. Corrosion/08 NACE International [C]. Houston, 2008: 505
[25] Mehanna M, Basseguy R, Delia M L, et al. Role of direct microbial electron transfer in corrosion of steels [J]. Electrochem. Commun., 2009, 11(3): 568-571
[26] Mehanna M, Basseguy R, Delia M L, et al. Geobacter sulfurreducens can protect 304L stainless steel against pitting in conditions of low electron acceptor concentrations [J]. Electrochem. Commun., 2010, 12(6): 724-728
[27] Mehanna M, Basseguy R, Delia M L, et al. Geobacter species enhances pit depth on 304L stainless steel in a medium lacking with electron donor [J]. Electrochem. Commun., 2009, 11(7): 1476-1481
[28] Xu F L. The foundational investigation of the marine electro-active biofilms and the application in the microorganism fuel cells[D]. Qingdao: Graduate School of Chinese Academy of Sciences (Institute of Oceanology), 2009
(许凤玲. 海洋生物膜的电活性及其在微生物燃料电池中的应用基础研究 [D]. 青岛: 中国科学院研究生院 (海洋研究所), 2009)
[29] Erable B, Duteanu N M, Ghangrekar M M, et al. Application of electro-active biofilms [J]. Biofouling, 2010, 26(1): 57-71
[30] Xu F L, Duan J Z, Hou B R. Electron transfer process from marine biofilms to graphite electrodes in seawater [J]. Bioelectrochemistry, 2010, 78(1): 92-95
[31] Obuekwe C O, Westlake D W S, Cook F D, et al. Surface changes in mild-steel coupons from the action of corrosion-causing bacteria [J]. Appl. Environ. Microb., 1981, 41(3): 766-774
[32] Obuekwe C O, Westlake D W S, Plambeck J A, et al. Corrosion of mild-steel in cultures of ferric iron reducing bacterium isolated from crude-oil. I. Polarization characteristics [J]. Corrosion, 1981, 37(8): 461-467
[33] Obuekwe C O, Westlake D W S, Plambeck J A, et al. Corrosion of mild-steel in cultures of ferric iron reducing bacterium isolated from crude-oil. II. Mechanism of anodic depolarization [J]. Corrosion, 1981, 37(11): 632-637
[34] Little B, Wagner P, Hart K, et al. The role of biomineralization in microbiologically influenced corrosion [J]. Biodegradation, 1998, 9(1): 1-10
[35] Zhang J, Song X X, Luan X, et al. Effects of Shewanella algae on corrosion of Zn-Al-Cd anode [J]. Acta Metall. Sin., 2012, 48(12): 1495-1502
(张杰, 宋秀霞, 栾鑫等. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响 [J]. 金属学报, 2012, 48(12): 1495-1502)
[36] Liu B, Duan J Z, Hou B R. Microbiologically influenced corrosion of 316L SS by marine biofilims in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 48-53
(刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53)
[37] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemistry Industry Press, 2004: 248-249
(曹楚南. 腐蚀电化学原理 [M]. 化学工业出版社, 2004: 248-249)
[38] Song S Z. Methods of Corrosion Electrochemistry Re-search [M]. Beijing: Chemistry Industry Press, 1988: 187
(宋诗哲. 腐蚀电化学研究方法 [M]. 化学工业出版社, 1988: 187)
[1] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[3] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[4] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[5] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[6] 丁祥彬,孙华,俞国军,周兴泰. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[7] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[8] 陈宇, 陈旭, 刘彤, 王冠夫, 王彦亮. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
[9] 常钦鹏, 陈友媛, 宋芳, 彭涛. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[10] 聂鸳鸳, 段继周, 杜敏, 侯保荣. 天然海水中NaN3对316L不锈钢表面微生物膜催化阴极氧还原的影响[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[11] 檀玉, 梁可心, 张胜寒. 光电化学法研究316L不锈钢在高温水中生成氧化膜的半导体性质[J]. 中国腐蚀与防护学报, 2013, 33(6): 491-495.
[12] 彭青姣,张志明,王俭秋,韩恩厚,柯伟. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 217-222.
[13] 刘彬,段继周,侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53.
[14] 郭金彪,陈阵,王璐,张婷. 少量硝酸对316L和Hastelloy C合金在循环废酸中腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2011, 31(2): 121-124.
[15] 唐俊文,邵亚薇,张涛,孟国哲,王福会. 饱和H2S对316L不锈钢腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(3): 246-250.