Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (5): 351-356    
  综述 本期目录 | 过刊浏览 |
埋地管道交流干扰与阴极保护相互作用研究进展
唐德志, 杜艳霞, 路民旭, 董亮, 姜子涛
北京科技大学新材料技术研究院 北京 100083
Progress in the Mutual Effects Between AC Interference and the Cathodic Protection of Buried Pipelines
TANG Dezhi, DU Yanxia, LU Minxu, DONG Liang, JIANG Zitao
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083,China
全文: PDF(442 KB)  
摘要: 系统地综述了交流干扰对阴保电位、阴保电流密度、牺牲阳极电位、牺牲阳极消耗速率、牺牲阳极效率等参数的影响,同时阐述了交流干扰下阴保评价准则及交流腐蚀机理的最新研究成果。最后指出了目前研究存在的主要问题,展望了该研究领域的发展趋势。
关键词 埋地管道交流干扰阴极保护参数影响机理    
Abstract:The dramatic development of oil, electric power and transportation industries deteriorated alternating current (AC) interference of the pipelines. As a consequence, not only the corrosion of pipelines would be enhanced, but also the cathodic protection (CP) systems be affected significantly. The traditional CP criterion (-850 mV(vs CSE)) was ineffective and a new CP criterion was in needed. The researches about effects of AC interference on CP parameters, such as CP potential,CP current density, sacrificial anode potential, sacrificial anode consumption rate and sacrificial anode efficiency, were reviewed in this article. At the same time, the latest researches on CP criterions and AC corrosion mechanisms were introduced. Finally, the key problems were indicated and the development trend of this research field was predicted.
Key wordsburied pipeline    AC interference    CP parameter    effect    mechanism
    
ZTFLH:  TE832  

引用本文:

唐德志, 杜艳霞, 路民旭, 董亮, 姜子涛. 埋地管道交流干扰与阴极保护相互作用研究进展[J]. 中国腐蚀与防护学报, 2013, 33(5): 351-356.
TANG Dezhi, DU Yanxia, LU Minxu, DONG Liang, JIANG Zitao. Progress in the Mutual Effects Between AC Interference and the Cathodic Protection of Buried Pipelines. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 351-356.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I5/351

[1] Baeckrnann W V, Schwenk W, Prinz W. Handbook of Cathodic Corrosion Protection [M]. Houston: Gulf Professional Publishing, 1997
[2] Gummow R A, Wakelin R G, Segall S M. AC corrosion-a new challenge to pipeline integrity [A]. Corrosion/1998 [C]. Houston, Texas: NACE, 1998: 98566
[3] Wakelin R G, Gummow R A, Segall S M. AC corrosion-ease histories, test procedures, mitigation [A]. Corrosion/1998 [C]. Houston, Texas: NACE, 1998: 98565
[4] Roger F. Testing and mitigation of AC corrosion on 8# line: a field study [A]. Corrosion/2004 [C]. Houston, Texas: NACE, 2004: 04210
[5] Hanson H R, Jack S. AC corrosion on a pipeline located in an HVAC utility corridor [A]. Corrosion/2004 [C]. Houston, Texas: NACE, 2004: 04209
[6] NACE TG 327 2007-02-08. AC corrosion state-of-the-art: Corrosion rate, mechanism, and mitigation requirements [S]
[7] Dévay J, Szegedi R, Labody I. Effect of alternating current on the electrolytic corrosion of steel [J]. Acta Chim. Hung., 1964, 42:191-226
[8] Chin D T, Venkatesh S. A study of alternating voltage modulation on the polarization of mild steel [J]. J. Electrochem. Soc., 1979, 126: 1908-1913
[9] Pookote S R, Chin D T. Effect of alternating current on the underground corrosion of steels [J]. Mater. Perform., 1978, 17(3): 9-15
[10] Kajiyama F, Nakamura Y. Effect of induced alternating current voltage on cathodically protected pipelines paralleling electric power transmission lines [J]. Corrosion, 1999, 55(2): 200-205
[11] Kouloumbi N, Batis G, Kioupis N, et al. Study of the effect of AC-interference on the cathodic protection of a gas pipeline [J]. Anti-corros. Methods Mater., 2002, 49(5): 335-345
[12] Lalvani S B, Lin X A. A theoretical approach for predicting AC-induced corrosion [J]. Corros. Sci., 1994, 36(6): 1039-1046
[13] Ding Q M, Wang H, Lv H L, et al. Electrochemical study on impact of AC on cathodic protection potential for X70 steel [J]. Corros. Prot., 2011, 32(12): 984-987
(丁清苗, 王辉, 吕毫龙等. 电化学方法研究交流干扰对阴极保护电位的影响 [J]. 腐蚀与防护, 2011, 32(12): 984-987)
[14] Du C Y. The impact of AC interference on cathodic protection systems of buried pipelines [D]. Beijng: University of Science &Technology Beijing, 2007
(杜晨阳. 交流电干扰对埋地管道阴极保护系统的影响 [D]. 北京: 北京科技大学, 2007)
[15] Cao B, Liu K W, Wu Y S. The effect of conductive coupling AC interference on cathodic protection systems [A]. 5th Corrosion Conference of China [C]. Beijing, 2009
(曹备, 刘科伟, 吴荫顺. 电阻耦合型交流干扰对阴极保护系统的影响[A]. 第五届全国腐蚀大会论文集 [C]. 北京, 2009)
[16] Pookote S R, Chin D T. Effect of alternating current on underground corrosion of steels [J]. Mater. Perform., 1978, 17(3):9-15
[17] Freiman L I, Yunovich M. Special behavior of steel cathode in soil and protection assessment of underground pipe with a buried coupon [J]. Prot. Met., 1991, 27(3): 437-447
[18] Gong J B, Xu N X, Zhang C D. The effect of AC interference on electrochemical performance of AZ41 magnesium sacrificial anode[J]. J. Chin. Soc. Corros. Prot., 1998, 18(2): 21-26
(龚金保, 徐乃欣, 张承典. 交流电干扰对镁合金AZ41牺牲阳极 电化学性能的影响 [J]. 中国腐蚀与防护学报, 1998, 18(2): 21-26)
[19] Bruckner W H. Electrochemical methods for the study of corrosion lead-encased water pipe and cables [J]. Corrosion, 1965, 8:135-136
[20] Yin K H, Tang M H, Xiong X J. Corrosion of buried steel structure under effect of electrical field with industry frequency [J]. J. Chin. Soc. Corros. Prot., 1982, 2(3): 33-41
(尹可华, 唐明华, 熊祥键. 埋地钢构筑物在工频电场作用下的腐蚀 [J]. 中国腐蚀与防护学报, 1982, 2(3): 33-41)
[21] CEOCOR-2001, AC corrosion on buried metallic pipeline-guidelines for risk assessment and mitigation measures [S]
[22] Li Z L, Yang Y. Mechanism, influence factors and risk evaluation of metal alternating current corrosion [J]. CIESC J., 2011, 62(7):1790-1799
(李自力, 杨燕. 金属材料交流腐蚀机理、影响因素及风险评价[J]. 化工学报, 2011, 62(7): 1790-1799)
[23] Philippe C. AC corrosion: detection, investigations and mechanisms [A]. Eurocorr/2003 [C]. Budapest, Hungary, 2003: 307
[24] Ormellese M, Lazzari L, Goidanich S, et al. CP criteria assessment in presence of AC interference [A]. Corrosion/2008 [C]. Houston, Texas: NACE, 2008: 08064
[25] Fu A Q, Cheng Y F. Corrosion of pipeline steel in the presence of alternating current and the new CP recommendation [A]. Proceeding of the 8th International Pipeline Conference [C]. Calgary Alberta, 2010: 31658
[26] Zhang G X. The effect of HVAC transmission lines on the corrosion behavior of buried pipelines [J]. Oil Gas Storage Transp., 2010, 30(2): 125-132
(张贵喜. 高压输电线路对埋地钢质管道的腐蚀影响 [J]. 油气储运, 2010, 30(2): 125-132)
[27] Guo X P, Zhang H M, Tang Y F. Determination of the optimum cathodic protection potential [J]. Corros. Sci. Prot. Technol., 1989, 1(2): 6-9
(郭兴蓬, 张华民, 唐永凡. 阴极保护最佳电位的确定 [J]. 腐蚀科学与防护技术, 1989, 1(2): 6-9)
[28] Xu N X, Zhang C D. Application of electrochemical impedance spectroscopy to cathodic protection study [J]. Corros. Prot., 1996, 18(2): 7-11
(徐乃欣, 张承典. 用电化学阻抗技术研究阴极保护 [J]. 腐蚀与防护, 1996, 18(2): 7- 11)
[29] Wu J X, Fu Z G. AC impedance characteristics of low alloy steels under cathodic protection and determination of the optimum protection potential [J]. J. Chin. Soc. Corros. Prot., 1989, 9(2): 160-164
(吴继勋, 傅争光. 用交流阻抗技术确定船用钢的最佳阴极保护电位 [J]. 中国腐蚀与防护学报, 1989, 9(2): 160-164)
[30] Li Z L, Ding Q M, Zhang Y F, et al. Optimal cathodic protection potential for X70 steel with AC interference determined by electrochemical methods [J]. Corros. Prot., 2010, 31(6): 436-439
(李自力, 丁清苗, 张迎芳等. 用电化学方法建立交流干扰下X70 钢的最佳阴极保护电位 [J]. 腐蚀与防护, 2010, 31(6): 436-439)
[31] Panossian Z. Effect of alternating current by high power lines Voltage and electric transmission systems in pipelines corrosion [A]. Corrosion/2009 [C]. Houston, Texas: NACE, 2009: 09541
[32] CEN/TS 15280:2006, Evaluation of a.c. corrosion likelihood of buried pipelines-application to cathodically protected pipelines [S]
[33] Hosokawa Y, Kajiyama Y, Nakamura Y. New CP criteria for elimination the risks of AC corrosion and overprotection on cathodically protected pipelines [A]. Corrosion/2002 [C], Houston, Texas: NACE, 2002: 02111
[34] Hu S X, Lu M X, Du Y X, et al. New opinions about the AC corrosion of pipelines [J]. Corros. Prot., 2010, 31(6): 419-424
(胡士信, 路民旭, 杜艳霞等. 管道交流腐蚀的新观点[J]. 腐蚀与防护, 2010, 31(6): 419-424)
[35] Frazier M J. Induced AC Influence on Pipeline Corrosion and Coating Disbondment [R]. Northwestern Univ., Evanston, IL (United States). Basic Industrial Research Lab, 1994
[36] Yunovich M, Neil G, Thompson. AC Corrosion: corrosion rate and mitigation requirements [A]. Corrosion/2004 [C], Houston, Texas: NACE, 2004: 04206
[37] McCollum B, Ahlborn G H. The influence of frequency of alternating or infrequently reversed current on electrolytic corrosion [J]. J. Franklin Inst., 1916, 182(1): 108-110
[38] Williams J. Corrosion of metals under the influence of alternating current [J]. Mater. Prot., 1966, 5(2): 52
[39] Bruckner W H. The effects of 60 cycle alternating current on the corrosion of steels and other metals buried in soils [R]. Illinois: Engineering Experiment Station Bulletin 470, University of Illinois, Urbana, 1964
[40] Goidanich S. Influence of AC on corrosion kinetics for carbon steel, zinc and copper [A]. Corrosion/2005 [C]. Houston, Texas: NACE, 2005: 05189
[41] Jones D A. Effect of alternating current on corrosion of low alloy and carbon steels [J]. Corrosion, 1978, 34(12): 428-433
[42] Pookote S R, Chin D T. Effect of alternating current on the underground corrosion of steels [J]. Mater. Perform., 1978, 17(3): 9-15
[43] Chin D T, Fu T W. Corrosion by alternating current: a study of the anodic polarization of mild steel in Na2SO4 solution [J]. Corrosion, 1979, 35(11): 514-523
[44] Hamlint A W. Some effects of alternating current on pipeline operations [J]. Mater. Perform., 1986, 25 (1): 57-62
[45] Nielsen L V, Nielsen K V. AC-induced corrosion in pipelines: detection, characterization and mitigation [A]. Corrosion/2004 [C], Houston, Texas: NACE, 2004: 04211
[46] Nielsen L V, Cohn P. AC corrosion in pipelines: Field experiences from a highly corrosive test site using ER corrosivity probes [A]. CEOCOR 2003 [C]. Brussels, Belgium, 2003
[47] Nielsen L V. On-Site measurements of AC induced corrosion: effects of AC and DC parameters [A]. CEOCOR 7 th International Congress [C]. Brussels, Belgium, 2005
[48] Nielsen L V. Investigating AC and DC stray current corrosion [A]. CEOCOR 7th International Congress [C]. Brussels, Belgium, 2005
[49] Nielsen L V. A field study of line currents and corrosion rate measurements in a pipeline critically interfered with AC and DC stray currents [A]. CEOCOR 2006 [C]. Brussels, Belgium, 2006
[50] Nielsen L V. Differential ER-technology for measuring degree of accumulated corrosion as well as instant corrosion rate [A]. Corrosion/2003 [C]. Houston, Texas: NACE, 2003: 03443
[51] Nielsen L V, Galsgaard F. Sensor technology for on-line monitoring of AC-induced corrosion along pipelines [A]. Corrosion/2005[C], Houston, Texas: NACE, 2005: 05375
[52] Panossian Z. Effect of alternating current by high power lines voltage and electric transmission systems in pipelines corrosion [A]. Corrosion/2009 [C]. Houston, Texas: NACE, 2009: 09541
[53] Büchler M, Schoneich H G. Investigation of alternating current corrosion of cathodically protected pipelines: development of a detection method, mitigating measures, and a model for the mechanism [J]. Corrosion, 2009, 65(9): 579-586
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[4] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[7] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[9] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[10] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[11] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[12] 夏大海, 宋诗哲, 王吉会, 高志明, 胡文彬. 食品包装用镀锡薄钢板的腐蚀机理研究进展[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[13] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[14] 王子豪,黄运华,李佳,杨浪,谢冬寒. Nb对X80钢焊接热影响区在模拟海水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 604-610.
[15] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.