Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (4): 339-346    
  研究报告 本期目录 | 过刊浏览 |
含平底型腐蚀缺陷钢管剩余强度的有限元求解和实验验证
杨专钊 刘道新 张晓化
西北工业大学航空学院 西安 710072
Finite Elements Analysis and Experimental Verification of Residual Strength of Steel Pipe with Flat Bottom Corrosion Defect
YANG Zhuanzhao, LIU Daoxin, ZHANG Xiaohua
School of Aeronautics,Northwestern Polytechnical University, Xi'an, 710072, China
全文: PDF(3896 KB)  
摘要: 以X65管线钢为研究对象,采用有限元方法(FEM)分析了不同深度和不同直径的平底型腐蚀缺陷对管线钢局部应力应变分布和剩余强度的影响规律,并通过实验方法进行了验证。结果表明,腐蚀缺陷深度愈大,剩余强度愈低;腐蚀缺陷直径愈大,剩余强度愈低,并且缺陷深度比缺陷直径对剩余强度的影响更为显著。采用拉伸实验方法,对直径为6 mm,深度分别为1/2壁厚和1/4壁厚的平底型腐蚀缺陷模拟试样进行实验验证,结果与FEM求解结果较为一致,尤其是含有大深度缺陷试样的实验结果同有限元计算结果的一致性更好。
关键词 平底型腐蚀缺陷剩余强度有限元分析实验验证    
Abstract:In order to reveal the influence of the defects size on the load capacity of a corroded line pipe of X65 steel, the distribution of the von Mises stress and strain as well as the relation of the residual strength of the line pipe with the depth and diameter of the flat bottom defects were analyzed by the finite element methods (FEM), meanwhile, the lab experiment was carried out to verify the calculated results. The results showed that, the deeper of the corroded defects, as well as the bigger the diameter of the defects, the less residual strength was, and the depth exhibited much significant influence than the diameter. Tensile tests were carried out for the specimens with flat bottom defects of 6 mm in diameter and of 0.25tt, thickness)and 0.5t in depth respectively, it follows that the experimental results were coincident to those of calculated by FEM, especially that of the specimen with the bigger defect depth.
Key wordsflat bottom defect    residual strength    finite elements analysis    experimental verification
    
ZTFLH:  TB304  

引用本文:

杨专钊, 刘道新, 张晓化. 含平底型腐蚀缺陷钢管剩余强度的有限元求解和实验验证[J]. 中国腐蚀与防护学报, 2013, 33(4): 339-346.
YANG Zhuanzhao, LIU Daoxin, ZHANG Xiaohua. Finite Elements Analysis and Experimental Verification of Residual Strength of Steel Pipe with Flat Bottom Corrosion Defect. Journal of Chinese Society for Corrosion and protection, 2013, 33(4): 339-346.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I4/339

[1] ASME B31G-2009, Manual for determining the remaining strength of Corroded pipeline- Supplement to ASME B31 Code for Pressure Piping [S]
[2] API RP 579:2000, Recommended Practice for Fitness-For-Service [S]
[3] DNV. RP-F101-1999, Corroded Pipelines [S]
[4] BS7910-2005, Guide on methods for assessing the acceptability of flaws in fusion welded structures [S]
[5] Cosham A, Hopkinsa P, Macdonald K A. Best practice for the assessment of defects in pipelines Corrosion [J]. Eng. Fail. Anal.,2007, 14(2): 1245-1265
[6] Shui J, Zhang C E, Chen F L. Prediction of failure pressure in corroded pipelines based on none linear finite element analysis [J]. Acta Petrol. Sin., 2008, 29(6): 933-937
(帅健, 张春娥, 陈福来. 非线性有限元法用于腐蚀管道失效压力预测 [J]. 石油学报, 2008, 29(6): 933-937)
[7] Shui J, Zhang C E, Chen F L. Comparison study on assessment methods for remaining strength of corroded pipeline [J]. Natur. Gas Ind., 2006, 26(11): 122-125
(帅健, 张春娥, 陈福来. 腐蚀管道剩余强度评价方法的对比研究 [J]. 天然气工业, 2006, 26(11): 122-125)
[8] Shui J, Zhang C E, Chen F L. Validation of Assessment Method for Remaining Strength of Corroded Pipeline Based on Burst Test Data [J]. Press. Vessel Technol., 2006, 23(10): 5-8
(帅健, 张春娥, 陈福来. 基于爆破实验数据对腐蚀管道剩余强度评定方法的验证 [J]. 压力容器, 2006, 23(10): 5-8)
[9] Jeom K P. Residual ultimate strength of steel plates with longitudinal cracks under axial compression–experiments [J]. Ocean Eng., 2008, 35(17):1775-1783
[10] Jeom K P. Residual ultimate strength of steel plates with longitudinal cracks under axial compression—Nonlinear finite element method investigations [J]. Ocean Eng., 2009, 36(3): 266-276
[11] Adib H, Jallouf S, Schmitt C, et al. Evaluation of the effect of corrosion defects on the structural integrity of X52 gas pipelines using the SINTAP procedure and notch theory [J]. Int. J. Press. Vessels Pip., 2007, 84(1):123-131
[12] API SPEC 5L-2008, Specification for pipe line [S]
[13] ASTM A370-12, Standard test methods and definitions for mechanical testing of steel products [S]
[14] Yang Z Z, Liu D X, Zhang X H. Finite element methods analysis of the stress for line pipe with corrode groove during outdoor storage [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26(2): 188-198
[1] 孙宝财,李淑欣,俞树荣,曾海龙. 改进BP算法的腐蚀管道剩余强度预测[J]. 中国腐蚀与防护学报, 2011, 31(5): 404-408.