Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (4): 331-338    
  研究报告 本期目录 | 过刊浏览 |
Cl-浓度渐变的混凝土孔隙液中钢筋的腐蚀过程
杜雅莉 张俊喜 蒋 俊 原徐杰 王灵芝 马行驰
上海电力学院 上海高校电厂腐蚀防护与应用电化学重点实验室 上海 200090
Corrosion Behavior of Reinforced Steel in Simulated Pore Solution with Gradual Augment of Cl-
DU Yali, ZHANG Junxi, JIANG Jun, YUAN Xujie, WANG Lingzhi, MA Xingchi
Key Laboratory of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai University of Electric Power, Shanghai 200090, China
全文: PDF(1899 KB)  
摘要: 采用EIS和线性极化曲线技术研究了供货状态和打磨后的钢筋样品在模拟孔隙液中Cl-浓度渐变条件下的腐蚀行为。采用SEM结合EDS和XRD对钢筋表面形貌和组成结构进行了分析。结果表明:在Cl-浓度逐渐增加的孔隙液中,钢筋表面的电化学行为基本可分为3个过程,即钝化膜形成或修复过程、Cl-侵蚀过程和Ca沉积过程。供货状态钢筋比打磨后的钢筋样品更容易发生腐蚀。结合电极的腐蚀电位、腐蚀电流和电化学阻抗等参数随Cl-浓度的变化,讨论了混凝土中钢筋腐蚀发生、发展各阶段的腐蚀电化学过程的变化规律。
关键词 混凝土Cl-锈蚀钢筋电化学测试    
Abstract:The corrosion behavior of reinforced steel with different surface states in simulated pore solution with gradual augment of Cl- was investigated by using electrochemical measurements, scanning electron microscopy with energy dispersive SEM/EDS and XRD. The variation of corrosion potential and corrosion current density of the reinforced steel with corrosion time was obtained, and the morphology and structure of corrosion products formed on the sample were analyzed. The results showed that the reinforced steel with different surfaces state had different corrosion characterizations; the corrosion process of reinforced steel might include three steps, i.e., the formation of passive film, the aggression of Cl- and the calcium deposition. It is more easy to happen corrosion for reinforced steel with oxide layer.
Key wordsconcrete    Cl-    corrosion    reinforced steel    electrochemical measurement
    
ZTFLH:  TG171  

引用本文:

杜雅莉, 张俊喜, 蒋俊, 原徐杰, 王灵芝, 马行驰. Cl-浓度渐变的混凝土孔隙液中钢筋的腐蚀过程[J]. 中国腐蚀与防护学报, 2013, 33(4): 331-338.
DU Yali, ZHANG Junxi, JIANG Jun, YUAN Xujie, WANG Lingzhi, MA Xingchi. Corrosion Behavior of Reinforced Steel in Simulated Pore Solution with Gradual Augment of Cl- . Journal of Chinese Society for Corrosion and protection, 2013, 33(4): 331-338.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I4/331

[1] Tian H W, Li W H, Zong C Z. Corrosion mechanism and research progress of anti-corrosion coating for reinforced concrete used in marine environment [J]. Paint Coating Ind., 2008,38(8): 62-67
(田惠文, 李伟华, 宗成中等. 海洋环境钢筋混凝土腐蚀机理和防腐涂料研究进展 [J]. 涂料工业, 2008, 38(8): 62-67)
[2] Wang L C, Chloride ion erosion model for concrete in chloride environment and its research development [J]. Port Waterway Eng., 2004, (4): 5-9
(王立成. 氯盐环境条件下混凝土氯离子侵蚀模型及其研究进展 [J]. 水运工程, 2004, (4): 5-9)
[3] Hartt W H. Corrosion initiation projection for reinforced concrete exposed to chlorides-part I: Black bars [J]. Corrosion, 2011, 67(8): 1-10
[4] Macdonald D D, AlRifaie M, Engelhardt G R. New rate laws for the growth and reduction of passive ?lms [J]. J. Electrochem. Soc., 2001, 148(9): B343-B347
[5] Pistorius P C, Burstein G T. Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel [J]. Corros. Sci., 1994, 36(3): 525-538
[6] Tritthart J. Pore solution of concrete: The equilibrium of bound and free chloride [J]. Mater. Corros., 2009, 60 (8): 579-586
[7] Chen Q, Song X B, Zhai Z Y, et al. Experimental research on chloride threshold level in simulated concrete solution [J]. Sichuan Building Sci., 2008, 34(6): 156-162
(陈卿, 宋晓冰, 翟之阳等. 混凝土模拟孔隙液中钢筋腐蚀临界氯离子浓度试验研究 [J]. 四川建筑科学研究, 2008, 34(6): 156-162)
[8] Ba H J, Zhao W X. Study on the chloride threshold level of reinforced steel in simulated concrete pore solution by testing Rp [J]. Concrete, 2010, (12): 1-4
(巴恒静, 赵炜璇. 利用极化电阻测试混凝土模拟孔隙溶液中钢筋锈蚀临界氯离子浓度 [J]. 混凝土, 2010, (12): 1-4)
[9] Wu Y H, Luo S X, Fu Y Y, et al. EIS characteristics of the steel in concrete in environment containing chloride ion [J]. Surf. Technol., 2011, 40(3): 65-67
(伍远辉, 罗宿星, 付盈盈等. 氯离子环境下混凝土钢筋的电化学阻抗谱特征 [J]. 表面技术, 2011, 40(3): 65-67)
[10] Chen X P, Wang X D, Li Y S, et al. Effect of Cl- on corrosion process of rebar in concrete [J]. Corros. Prot., 2011, 32(3): 190-192
(陈小平, 王向东, 李玉素等. 氯离子环境下混凝土钢筋的锈蚀过程 [J]. 腐蚀与防护, 2011, 32(3): 190-192)
[11] Hu R G, Huang R S, Du R G, et al. Study on corrosion behavior of reinforcing steel in concrete subjected to chloride contamination by EIS [J]. Acta Phys.-Chim. Sin., 2003, 19(1): 46-50
(胡融刚, 黄若双, 杜荣归等. 氯离子侵蚀下钢筋在混凝土中腐蚀行为的EIS研究 [J]. 物理化学学报, 2003, 19(1): 46-50)
[12] Song H W, Jung M S, Lee C H, et al. Influence of chemistry of chloride ions in cement matrixes corrosion of steel [J]. ACI Mater. J., 2010, 107(7-8): 332-341
[13] Wang Y, Shi Y X, Wei B M, et al. A XPS study of rebar passive film and effect of chloride ions on it [J]. J. Chin. Soc. Corros. Prot., 1998, 18(2): 107-112
(汪鹰, 史苑芗, 魏宝明. 用XPS研究钢筋钝化膜和Cl-对钝化膜的影响 [J]. 中国腐蚀与防护学报, 1998, 18(2): 107-112
[14] Jamil H E, Shriri A, Boulif R, et al. Corrosion behavior of reinforced steel exposed to an amino alcohol-based corrosion inhibitor [J]. Cement Concrete Composites, 2005, 27(6): 671-678
[15] Li Q B, Liu M, Zhou Y Z, et al. Research survey on rust-eaten and protection of the rebar in reinforced concrete [J]. Total Corros. Contr., 2010, 24(11): 3-6
(李群波, 刘敏, 周勇璋等. 钢筋混凝土中钢筋锈蚀与防护研究概述 [J]. 全面腐蚀控制, 2010, 24(11): 3-6)
[16] Stratfull R F, The corrosion of steel in a reinforced concrete bridge [J]. Corrosion, 1956, 13(3): 173-178
[17] Shi X M, Nguyen T A, Kumar P, et al. A phenomenological model for the chloride threshold of pitting corrosion of steel in simulated concrete pore solutions [J]. Anti-Corros. Method. Mater., 2011, 58(4): 179-189
[18] Zhang Q Q, Sun W, Liu J P, et al. Analysis of some factors affecting chloride threshold level in simulated concrete pore solution [J]. J. Southeast Univ. (Nat. Sci.), 2010, 40(suppl. II): 177-181
(张倩倩, 孙伟, 刘加平等. 混凝土模拟液中临界氯离子浓度影响因素分析 [J]. 东南大学学报(自然科学版), 2010, 40(增刊II): 177-181)
[19] Jung H, Kwon K J, Lee E, et al. Effect of dissolved oxygen on corrosion properties of reinforcing steel [J]. Corros. Eng. Sci. Technol., 2011, 46(2): 195-200
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 邓培昌, 钟杰, 王坤, 胡杰珍, 李子运, 岑楚欣, 沈小涵. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[3] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[4] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[5] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[6] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[7] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[8] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[9] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[10] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[11] 陈云翔, 冯丽娟, 蔡建宾, 王璇, 洪毅成, 林德源, 庄建煌, 杨怀玉. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[12] 田雪凯, 王海龙, 程旭东, 孙晓燕. 混凝土裂缝形态参数对Cl-传输性能影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
[13] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[14] 刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[15] 苗伟行,胡文彬,高志明,孔宪刚,赵茹,唐军务. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.