Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (4): 283-287    
  研究报告 本期目录 | 过刊浏览 |
Cr对铸态X52钢在湿H2S环境中腐蚀行为的影响
林鸿亮 王俭秋 韩恩厚
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Influence of Cr Addition on Corrosion Behavior of Cast X52 Steel in Wet H2S Environment at 30 ℃
LIN Hongliang, WANG Jianqiu, HAN En-Hou
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(4125 KB)  
摘要: 采用动电位极化、电化学阻抗谱(EIS)测试、浸泡实验、SEM和EDS分析研究了Cr的添加对铸态X52钢在湿H2S环境中腐蚀行为的影响。结果表明,Cr的添加,对阴极反应有显著的抑制作用,提高了铸态X52钢的耐蚀性。但耐蚀性并不总是随着Cr含量的升高而增强。Cr的添加对腐蚀产物的形貌有很大影响,使表面腐蚀产物由疏松多孔变为致密平整。内层富Cr腐蚀产物的出现,使腐蚀速率明显降低。
关键词 铸态X52钢电化学腐蚀富Cr层    
Abstract:To elucidate the effect of Cr on the corrosion behavior of cast X52 steel in H2S containing environments, potentiodynamic polarization tests, electrochemical impedance spectroscopy (EIS) measurements, immersion tests SEM and EDS analysis were conducted. The results show that Cr addition leads to a remarkable decrease in the cathodic current density. However, the corrosion resistant did not increase linearly with the increasing Cr content. The addition of Cr altered the corrosion morphology, whilst the formed oxide scale transformed gradually from porous to compact. SEM-EDS analysis revealed the presence of Cr-rich corrosion products in the inner portion of the formed oxide scale, which may be responsible to the distinct drop in corrosion rate.
Key wordscast X52 steel    electrochemical    corrosion    Cr-rich oxide
    
ZTFLH:  TG174.1  

引用本文:

林鸿亮, 王俭秋, 韩恩厚. Cr对铸态X52钢在湿H2S环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 283-287.
LIN Hongliang, WANG Jianqiu, HAN En-Hou. Influence of Cr Addition on Corrosion Behavior of Cast X52 Steel in Wet H2S Environment at 30 ℃. Journal of Chinese Society for Corrosion and protection, 2013, 33(4): 283-287.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I4/283

[1] Liu Z D, Gu T, Tang Y F, et al. Researches on the electrochemical corrosion of the gathering lines in sour gas fields [J]. Chem. Eng. Oil Gas, 2007, 36(1): 55-58
(刘志德, 谷坛, 唐永帆等. 高酸性气田地面集输管线电化学腐蚀研究 [J].石油与天然气化工, 2007, 36(1): 55-58)
[2] Fragiel A, Serna S, Perez R. Electrochemical study of two micro alloyed pipeline steels in H2S environments [J]. Int. J. Hydrogen Energy, 2005, 30: 1303-1309
[3] Hamdy A S, Saeh A G , Shoeib M A , et al. Evaluation of corrosion and erosion-corrosion resistances of mild steel in sulfide-containing NaCl aerated solutions [J]. Electrochim. Acta, 2007, 52: 7068-7074
[4] Lucio-Garcia M A , Gonzalez J G , Casales M. Effect of heat treatment on H2S corrosion of a micro-alloyed C-M steel [J]. Corros. Sci., 2009, 51: 2380-2386
[5] Zhao X H, Bai Z Q, Han Y, et al. Comparison on corrosion behavior of sulfur-resistant tubes under simulated oil and gas field environment [J]. Phys. Test. Chem. Anal., 2011, 47(1)A: 5-10
(赵雪会, 白真权, 韩燕等. 模拟油气田环境下抗硫管的腐蚀行为对比 [J]. 理化检验, 2011, 47(1)A: 5-10)
[6] Zhang D, Xian A P, Wang Y K, et al. Research of casting well equipment materials in sulfur oil & gas field [J]. Shenyang Chem. Ind., 1998, 27(3): 13-16
(张盾, 冼爱平, 王仪康.含硫油气田铸造井口设备材料的研究 [J]. 沈阳化工, 1998, 27(3): 13-16)
[7] Brooks A. R, Clayton C. R, Doss K, et al. On the Role of Cr in the passivity of stainless steel [J]. J. Electrochem. Soc., 1986, 133: 2459-2464
[8] Horvath J, Uhlig H H. Critical potentials for pitting corrosion of Ni, Cr-Ni, Cr-Fe, and related stainless steels [J]. J. Electrochem. Soc., 1968, 115: 791-795
[9] Tedmon C S, Vermilyea J, Rosolowski D A J H. Intergranular corrosion of austenitic stainless steel [J]. J. Electrochem. Soc., 1971, 118: 192-202
[10] Bruemmer S M, Arey B W, Charlot L A. Influence of chromium depletion on intergranular stress corrosion cracking of 304 stainless steel [J]. Corrosion, 1992, 48: 42-49
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[12] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[13] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[14] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[15] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.