Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (2): 97-103    
  研究报告 本期目录 | 过刊浏览 |
乙醇胺ETA浓度对核电站二回路碳钢和镍基合金690腐蚀的影响
孙荣鹏 王俭秋 韩恩厚
中国科学院金属研究所 材料环境腐蚀研究中心 沈阳 110016
Effects of ETA Concentration on Corrosion of Carbon Steel and Nickel Based Alloy 690 in Nuclear Power Plant on Secondary Side
SUN Rongpeng, WANG Jianqiu, Han En-Hou
Environmental Corrosion Research Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(4090 KB)  
摘要: 

利用扫描电镜(SEM)、X射线光电子谱(XPS)、X射线衍射(XRD)分析以及电化学实验研究了乙醇胺(ETA)浓度对碳钢和690合金浸泡腐蚀和电化学腐蚀行为的影响。结果表明,碳钢的点蚀随着浓度的增加明显减少,碳钢表面腐蚀产物的主要成分为Fe3O4,690合金表面膜中没有观察到双层膜结构;在浓度为40、50、80 mg/L时观察到Cr的富集峰。在280 ℃条件下的电化学实验结果表明,ETA浓度为20 mg/L和40 mg/L时,对碳钢和690合金的电化学腐蚀行为影响不大。而在80 mg/L时,两种材料的腐蚀电流密度下降较多,极化电阻显著增大。

关键词 碳钢690合金腐蚀乙醇胺(ETA)二回路水化学    
Abstract

Ethanolamine (ETA) is a kind of pH control agent in all volatile treatment (AVT) in nuclear power plant. In this article the corrosion behavior of carbon steel and nickel based alloy 690 in solutions with different ETA concentration was investigated. Corrosion morphology of both metal was observed using scanning electron microscope (SEM) and composition of their oxide is analyzed by X-ray photoelectron spectroscopy analysis (XPS) and X-ray diffraction (XRD). It was discovered that the oxide formed on carbon steel was Fe3O4 and its pitting became fewer and shallower as ETA concentration increased, which suggested strong inhibiting effects of ETA on carbon steel pitting; while the duplex structure was not discovered in oxide formed on alloy 690, only peak of Cr was found in the oxide on alloy 690 immersed in 40, 50, 80 mg/L ETA solutions. Electrochemical experiments results under 280 ℃ showed in 20 mg/L and 40 mg/L ETA solution the electrochemical behavior was nearly the same, relevant parameter of linear polarization was of small difference, while the corrosion current of carbon steel dropped to 1/9 and corrosion current of alloy 690 dropped to 1/3 and the polarization resistance increased significantly in 80 mg/L ETA solution compared with those in 20 mg/L and 40 mg/L ETA solution.

Key wordscarbon steel    alloy 690    corrosion    Ethanolamine (ETA)    secondary side water chemistry
    
ZTFLH:  TG174.1  

引用本文:

孙荣鹏 王俭秋 韩恩厚. 乙醇胺ETA浓度对核电站二回路碳钢和镍基合金690腐蚀的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 97-103.
. Effects of ETA Concentration on Corrosion of Carbon Steel and Nickel Based Alloy 690 in Nuclear Power Plant on Secondary Side. Journal of Chinese Society for Corrosion and protection, 2013, 33(2): 97-103.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I2/97

[1] Nordmann F, Fiquet J M. Selection criteria for the best secondary water chemistry [J]. Nucl. Eng. Des., 1996(160): 193-201
[2] Yun G C, Cheng X Z. Water Chemistry in Pressurized Water Reactor [M]. Harbin: Harbin Engineering University Press, 2009
(云贵春, 成徐州. 压水反应堆水化学 [M]. 哈尔滨: 哈尔滨工程大学出版社, 2009)
[3] Tomlinson L. Mechanism of corrosion of carbon and low alloy ferritic steels by high temperature [J]. Corrosion, 1981, 37: 591-596
[4] Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1 [J]. Corrosion, 2003, 59: 931-994
[5] Carrette F, Lafont M C, Chatainier G, et al. Analysis and TEM examination of corrosion scales grown on alloy 690 exposed to pressurized water at 325 degrees C [J]. Surf. Interf. Anal., 2002, 34: 135-138
[6] Kuang W J, Wu X Q, Han E H, et al. The mechanism of oxide film formation on alloy 690 in oxygenated high temperature water [J]. Corros. Sci., 2011, 53: 3853-3860
[7] Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49: 3957-3964
[8] Chao C Y, Lin L F, Macdonald D D. A point-defect model for anodic passive films. 1. Film growth-kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187-1194
[9] Lin L F, Chao C Y, Macdonald D D. A point-defect model for anodic passive films. 2. Chemical breakdown and pit initiation [J]. J. Electrochem. Soc., 1981, 128: 1194-1198
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.