Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (2): 123-128    
  研究报告 本期目录 | 过刊浏览 |
镀铌不锈钢双极板的电化学性能
曹彩红 梁成浩 黄乃宝
大连海事大学交通运输装备与海洋工程学院 大连 116026
Electrochemical Characteristic of Stainless Steel Bipolar Plates Deposited with Niobium
CAO Caihong , LIANG Chenghao , HUANG Naibao
Transportation and Logistics Engineering College , Dalian Maritime University , Dalian 116026, China
全文: PDF(2239 KB)  
摘要: 采用对水和空气稳定的氯化胆碱:乙二醇=1:2(摩尔比)的离子液体为电解质,在316不锈钢基体上进行电镀铌,考察模拟质子交换膜燃料电池(PEMFC)环境中镀铌不锈钢双极板的电化学性能。结果表明,以氯化胆碱类离子液体为电解质在316不锈钢表面可获得平整均匀的颗粒状铌镀层。在模拟质子交换膜燃料电池环境中,镀铌316不锈钢的腐蚀电位得到提高,维钝电流密度减小,阳极极化性能得到改善;孔蚀电位正移,反应电阻增大,耐蚀性能提高。能谱和X射线衍射分析结果表明,镀铌后316不锈钢表面生成化学惰性良好的NbO和Nb2O5,形成耐蚀“屏障”,改善了不锈钢表面膜的钝化能力,提高了不锈钢的电化学稳定性能。
关键词 氯化胆碱离子液体不锈钢双极板电化学性能    
Abstract:Niobium was electrodeposited on 316 stainless steel in water and air-stable choline chloride based ionic liquid (choline chloride: ethylene glycol=1:2(mole ratio)). The electrochemical characteristic of the coated steel was investigated in simulated proton exchange membrane fuel cell (PEMFC) environment. The results indicated that the uniform film was obtained on stainless steel surface. In simulated PEMFC environment, after 316 stainless steel was coated with niobium, its electrochemical characteristics were improved greatly, such as the corrosion potential increased, the passivation current density decreased, the pitting potential moved toward positive, and the reaction resistance increased. The deposited niobium film was mainly composed of Nb, NbO and Nb2O5, among them NbO and Nb2O5 behaved as an anti-corrosion barrier and improved the passavition ability of surface layer. So the electrochemical stability of the stainless steel bipolar plate was increased remarkably.
Key wordschloride based ionic liquid    niobium    stainless steel bipolar plate    electrochemical characteristic
    
ZTFLH:  TG174.4  

引用本文:

曹彩红 梁成浩 黄乃宝. 镀铌不锈钢双极板的电化学性能[J]. 中国腐蚀与防护学报, 2013, 33(2): 123-128.
. Electrochemical Characteristic of Stainless Steel Bipolar Plates Deposited with Niobium. Journal of Chinese Society for Corrosion and protection, 2013, 33(2): 123-128.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I2/123

[1] Turner J A. Stainless steel as a bipolar plate material for polymer eletrolyte membrane fuel cell [J]. J. Power Sources, 2003, 115(2): 243-251
[2] Taw fik H, Hung Y, Mahajan D. Metal bipolar plates for PEM fuel cell a review [J]. J. Power Sources, 2007, 163(2): 755-767
[3] Paulauskas I E, Brady M P, Meyer H M, et al. Corrosion behavior of CrN,Cr2N and p phase surfaces on nitrided Ni-50Cr for proton exchange membrane fuel bipolar plates[J]. Corros. Sci., 2006, 48(10): 3157-3171
[4] Brady M P, Weisbrod K, Paulaukas I, et al. Preferential thermal nitridation to form pri-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates [J]. Scr. Mater., 2004, 50(7): 1017-1022
[5] Hong S T, Scott W K. Niobium-clad 304L stainless steel PEMFC bipolar plate material: Tensile and bend properties [J]. J. Power Sources, 2007, 168(2): 408-417
[6] Hong S T. Annealing induced interfacial layers in niobium-clad stainless steel developed as a bipolar plate material for polymer electrolyte membrane fuel cell stacks [J]. J. Power Sources, 2010, 195(9): 2592-2598
[7] Koura N, Umembayashi T, Idemoto Y. Electrodeposition of Nb-Sn alloy form SnCl2-NbCl5-MEIC molten salts [J]. Electrochemistry, 1999, 67(6): 684-689
[8] Abbott A P, Boothby D, Capper G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids:Versatile alternatives to ionic liquids [J]. J. Am. Chem. Soc., 2004, 126(9): 9142-9147
[9] Andrew P. Abbott, Glen Capper Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride [J]. J. Electroanal. Chem., 2007, 599(2): 288-294
[10] Abbott A P, Capper G, Swain B G, et al. Electropolishing of stainless steel in an ionic liquid [J]. Trans. Inst. Met. Finish., 2005, 83(1): 51-53
[11] Mei T Q, Yu G N, He L M, et al. Electrodeposition of aluminum from AlCl3-[bmin]Cl ionic Liuids [J]. J. Chin. Soc. Corros. Prot., 2011, 31(4): 319-322
(梅天庆, 鱼光楠, 贺利敏等. 离子液体AlCl3-[bmin]Cl中电沉积铝的研究 [J]. 中国腐蚀与防护学报, 2011, 31(4): 319-322)
[12]Yang H Y, Guo X W, Wu G H, et al. Electrodeposition of Zn on AZ91D in choline chloride-ZUREA ionic liuids [J]. J. Chin. Soc. Corros. Prot., 2010, 30(2): 155-160
(杨海燕, 郭兴伍, 伍国华等. AZ91D镁合金在氯化胆碱-尿素离子液体中电镀Zn的研究 [J]. 中国腐蚀与防护学报, 2010, 30(2):155-160)
[13]Yang P X, An M Z, Su C N, et al. Influence of additive on electrodeposition of pure cobalt from an ionic liquid [J]. J. Chin. Inorg. Chem., 2009, 25(1):112-116
(杨培霞, 安茂忠, 苏彩娜等. 添加剂对离子液体中电沉积钴的影响 [J]. 无机化学学报, 2009, 25(1): 112-116)
[14] Gao L X, Wang L N, Qi T, et al. Preparation of Ni and Ni-Al alloys from ZAlCl3/Et3NHCl ionic liquid by electrodeposition [J]. Acta Phys. Chim. Sin., 2012, 28(1): 111-120
(高丽霞, 王丽娜, 齐涛等. 从ZAlCl3/Et3NHCl离子液体中电沉积制备Ni和Ni-Al合金 [J]. 物理化学学报, 2012, 28(1): 111-120)
[15] Ren Y J, Chen J, Zeng C L. Corrosion protection of type 304 stainless steel bipolar plates of proton-exchange membrane fuel cells by doped polyaniline coating[J]. J. Power Sources, 2010, 195(7): 1914-1919
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[3] 沈杰,刘卫,王铁钢,潘太军. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 63-68.
[4] 郭海艳,朱君秋,邵艳群,唐电. 表面活性剂辅助制备钛阳极的电化学性能[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
[5] 孙涛,邓博, 徐菊良,李劲,蒋益明. 氮、铌添加对304奥氏体不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.
[6] 马力,李威力,曾红杰,闫永贵,侯保荣. 低驱动电位Al-Ga合金牺牲阳极及其活化机制[J]. 中国腐蚀与防护学报, 2010, 30(4): 329-332.
[7] 梁叔全,张勇,官迪凯,谭小平,唐艳,毛志伟. 轧制温度对铝阳极Al-Mg-Sn-Bi-Ga-In组织和性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[8] 侯军才; 关绍康; 任晨星; 徐河; 房中学; 赵彦学 . 微量锶对镁锰牺牲阳极显微组织和电化学性能的影响[J]. 中国腐蚀与防护学报, 2006, 26(3): 166-170 .