Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (2): 109-116    
  研究报告 本期目录 | 过刊浏览 |
水杨醛类吡啶甲酰腙席夫碱对碳钢在
海水中缓蚀行为的研究
刘峥 刘洁 刘进 刘宝玉
桂林理工大学化学与生物工程学院 桂林 541004
Corrosion Inhibitor of Salicylic Aldehyde Pyridine Hydrazone for Mild Steel in Seawater
LIU Zheng, LIU Jie, LIU Jin, LIU Baoyu
College of Chemical and Biological Engineering, Guilin University of Technology, Guilin 541004, China
全文: PDF(3947 KB)  
摘要: 合成了3种水杨醛类吡啶甲酰腙席夫碱化合物(L1、L2、L3)。以失重法、电化学方法、扫描电镜和分子动力学模拟方法考察它们在海水中对低碳钢的缓蚀行为,探讨其缓蚀机理和吸附行为。结果表明,3种酰腙席夫碱属混合型缓蚀剂,在海水中均能有效的抑制碳钢的腐蚀。缓蚀能力的大小遵循L3>L2>L1,失重实验显示当L3浓度为2.8×10-4 mol/L时,缓蚀率最大为87.8%。其在碳钢表面上的吸附符合Langmuir吸附等温式,是自发放热吸附过程,吸附机理为化学吸附,扫描电镜和分子动力学模拟结果也证明了3种酰腙席夫碱特别是L3可有效的抑制海水对低碳钢的腐蚀。
关键词 酰腙席夫碱低碳钢海水吸附缓蚀    
Abstract:Three kinds of salicylic aldehyde pyridine formyl hydrazone Schiff bases compounds were synthesized. Their inhibition and adsorption behavior on low carbon steel in seawater were investigated by weight loss method, electrochemical methods, scanning electron microscopy and molecular dynamics simulations,respectively. Experiment results indicated that three kinds of salicylic aldehyde pyridine formyl hydrazone Schiff bases behaved as the mixed type inhibitors, and the inhibitors were excellent inhibitors for low carbon steel in seawater. Their capacity of inhibition were: L3> L2> L1.The weight loss method showed that the inhibition efficiency of L3 reaches 87.8% with the inhibitor concentration of 2.8 × 10-4 mol / L. The adsorption of the three inhibitors on the surface of carbon steel were found to follow the Langmuir adsorption isotherm ,which is a spontaneous exothermic process and the adsorption mechanism was chemisorption. Scanning electron microscopy and molecular dynamics simulations also proved that three kinds of Schiff bases, in particular, the L3 can effectively inhibit the seawater corrosion of low carbon steel.
Key wordshydrazone schiff base    low-carbon steel    seawater    adsorption    corrosion inhibition
    
ZTFLH:  O646.6  

引用本文:

刘峥 刘洁 刘进 刘宝玉. 水杨醛类吡啶甲酰腙席夫碱对碳钢在
海水中缓蚀行为的研究[J]. 中国腐蚀与防护学报, 2013, 33(2): 109-116.
. Corrosion Inhibitor of Salicylic Aldehyde Pyridine Hydrazone for Mild Steel in Seawater. Journal of Chinese Society for Corrosion and protection, 2013, 33(2): 109-116.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I2/109

[1] Li Y F, Cheng X F. The comprehensive utilization of chemical resources from seawater [J], Inorg. Chem. Ind., 2008, 38(4): 11-12
(李雅芙,陈向峰. 浅谈海水化学资源综合利用生产工艺 [J]. 无机盐业,2008, 38(4): 11-12)
[2] Huang C S, Xu P B. Analysis on the utilization mode and future trend of the seawater resources in China [J]. China Resour. Compr. Util., 2008,126(5):3-5
(黄昌硕,徐澎波. 我国海水资源的利用模式与发展趋势 [J]. 中国资源综合利用,2008,126(5): 3-5)
[3]Wang L R, Zhang S F, Zhuang X J, et al.The research progress of sea water medium-carbon steel corrosion inhibitors [J]. Inner Mong.Petro. Chem. Ind., 2008,(1):5-6
(王丽荣,张树芳,庄晓娟等. 海水中碳钢缓蚀剂的研究进展 [J]. 内蒙古石油化工,2008,(1): 5-6)
[4] Elwahaab S M A, Gomma G K., Elbarradie H Y. Galvanostatic and temperature kinetic-studies of acid corrosion of low-carbon Steel in sulfuric-acid in presence of malonate hydrazide [J]. J. Chem. Technol. Biotechnol., 1986, 36(4): 435-441
[5] Hossain S A, Almarshad A I. Inhibiting effect of thiosemicarbazide on cold rolled carbon steel [J]. Corros. Eng. Sci. Technol., 2006, 41(7) :77-81
[6] Yurchenko R I, Pogrebova I S, Pilipenko T N, et al. Anticorrosive properties of N-acetylmethylpyridinium bromides [J]. Russ. J. Appl. Chem, 2006, 79(5): 1100-1104
[7] Wu W S, Liu S X, Huang Z X. Synthesis and crystal structure of copper complex containing N-acetylpicoloylhydrazide [J]. J. Molecul. Sci., 2009, 19(1): 40-46
(吴文士, 刘世雄, 黄尊行. N -乙酰皮考林酰肼合铜的合成和晶体结构 [J]. 分子科学学报, 2009, 19(1): 40-46)
[8] Emmons D W. Organic Synthesis[M]. New Youk: John wlley and Sons Inc., 1966, 46, 28-29
[9] Wang G R. Studies on the Synthesis,Characterization and Corrosion Behavior of Pyridine formyl Hydrazone Schiff base [D]. Guilin: Guilin University of Technology, 2010
(王国瑞. 取代吡啶甲酰腙席夫碱的合成、表征及其缓蚀行为研究 [D]. 桂林: 桂林理工大学, 2010年)
[10] Zhou J Q,Wang H Z, Ma Q H, et al. Electrochemical impedance spectroscopy of welded joints of copper pipe in artifical seawater [J]. Corros. Prot., 2007, 28(8): 403-406
(周建奇,王宏智,马青华等. 海水管路黄铜焊接接头在人工海水中的电化学阻抗谱 [J]. 腐蚀与防护,2007,28(8): 403-406)
[11] Wang J H,Xie C S,Liu Z C,et al. Study on corrosion of CuAlBe damping alloy in sea [J]. J. East China Shipbuild.Inst., 2004, 18(4):75-77
(王冀恒,谢春生,刘占超等. 高阻尼螺旋桨材料CuAlBe合金在人工海水中耐蚀性能的研究 [J]. 华东船舶学院学报, 2004, 18(4): 75-77)
[12] Wangh H Z, Chen J, Zhou J Q, et al. Corrosion behavior of welded joints of copper pipe in artificial seawater [J]. J. Chem. Ind. Eng., 2006, 57(11): 2677-2681
(王宏智,陈君,周建奇等. 紫铜海水管焊接部位在人工海水中的腐蚀行为 [J]. 化工学报, 2006, 57(11): 2677-2681)
[13] Yan Y, Li W H, Cai L K, et al. Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1M HCl solution [J]. Electrochim. Acta, 2008, 53(7): 5953-5960
[14] Li X H, Mu G N. Tween-40 as corrosion inhibitor for cold rolled steel in sulphuric acid: Weight loss study, electrochemical characterization, and AFM [J]. Appl. Surf. Sci., 2005, 252(3): 1254-1265
[15] Bentiss F, Gassama F, Barbry D, et al. Enhanced corrosion resistance of mild steel in molar hydrochloric acid solution by 1,4-bis(2-pyridyl)-5H-pyridazino[4,5-b]indole: Electrochemical,theoretical and XPS studies [J]. Appl.Surf.Sci., 2006, 252(8): 2684-2691
[16] Matja? F, Antonija L, Anton K, et al. comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution [J]. Electrochim. Acta, 2008, 53(6): 8287-8297
[17] Yu H, Wu J H, Qian J H, et al. Study of the inhibition behavior of a new kind corrosion inhibtor in seawater [J]. J.Chin. Soci. Corros. Prot., 2003,23(8): 295-298
(于辉, 吴建华, 钱建华等. 一种海水缓蚀剂缓蚀行为的研究 [J].中国腐蚀与防护学报, 2003, 23(8): 295-298)
[18] Amar H, Tounsi A, Makayssi A, et al. Corrosion inhibition of Armco iron by 2-mercaptobenzimidazole in sodium chloride 3% media [J]. Corros. Sci., 2007, 49(7): 2936-2945
[19] Morad M S.Corrosion inhibition of mild steel in sulfamic acid solution by S-containing amino acids [J]. J. Appl. Electrochem., 2008, 38(2): 1509-1518
[20] Han L, Song S Z. A measurement system based on electrochemical frequency modulation technique for monitoring the early corrosion of mild steel in seawater [J]. Corros. Sci., 2008, 50(6): 1551-1557
[21] Brug G J, Vandeneeden A L G, Sluytersrehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element [J]. J. Electroanaly. Chem., 1984, 176(4): 275-295
[22] Bentiss M F, Bouanis B. Mernari, et al. Understanding the adsorption of 4H-1,2,4-triazole derivatives on mild steel surface in molar hydrochloric acid [J]. Appl. Surf. Sci., 2007, 253(7): 3896-3704
[23] Outiritea M, Lagrenéea M, Lebrinia M, et al. Ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution [J]. Electrochim. Acta, 2009, 55(5): 1670-1681
[24] Elayyachy M, El Idrissi A, Hammouti B. New thio-compounds as corrosion inhibitor for steel in 1 M HCl [J]. Corros. Sci., 2006, 48(9):2470-2479
[25] Szklarska-Smialowska Z, Mankowski J. Crevice corrosion of stainless steels in sodium chloride solution [J]. Corros. Sci., 1978, 18(11): 953-956
[26] Wang H L, Fan H B, Zheng J S. Corrosion inhibition of mild steel in hydrochloric acid solution by a mercapto-triazole compound [J]. Mater. Chem. Phys., 2003, 77(3): 655-661
[27] Hamdy H H. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part II: Time and temperature effects and thermodynamic treatments [J]. Electrochim. Acta,2007, 53(4): 1722-1730
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[5] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[6] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[7] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[8] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[9] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[10] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[11] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[12] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[13] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[14] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[15] 杨丹,李定林,黄彦良,华丕龙,赵霞,彭鹏,王秀通. 海水抽水蓄能电站的金属腐蚀和选材问题研究现状[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.