Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (1): 41-46    
  技术报告 本期目录 | 过刊浏览 |
尿素对模拟汽车废气环境中不锈钢冷凝液腐蚀行为的影响
王士栋,韩沛洪,马荣耀,李谋成,沈嘉年
上海大学材料研究所 上海 200072
Effect of Urea on Condensates Corrosion of Stainless Steels in Simulated Automotive Exhaust Environments
WANG Shidong, HAN Peihong, MA Rongyao, LI Moucheng, SHEN Jianian
Institute of Materials, Shanghai University, Shanghai 200072, China
全文: PDF(6295 KB)  
摘要: 

采用高温废气氧化-酸性冷凝液浸泡循环法模拟柴油机的排气环境,对比研究废气中引入尿素后排气系统用304和439不锈钢的冷凝液腐蚀行为,并分析了尿素对不锈钢氧化与腐蚀的作用。电化学测试结果表明:经400 ℃氧化后,304不锈钢在冷凝液中的腐蚀处于钝化状态,而439不锈钢的腐蚀趋于活化状态;在有/无尿素条件下,试样表面产物膜在氧化和腐蚀的循环作用下均会发生破坏而形成局部腐蚀坑;废气中引入尿素会增强其对两种不锈钢的氧化作用,进而导致不锈钢的均匀腐蚀量增大而局部腐蚀深度减小。

关键词 汽车排气系统腐蚀选择性催化还原(SCR)尿素不锈钢    
Abstract

The high-temperature exhaust gas oxidation-acidic condensates immersion cyclic test was used to simulate diesel exhaust after-treatment environments. After oxidation at 400 ℃ in simulated exhaust gas environments with or without urea, the corrosion behavior of 304 and 439 stainless steels was investigated in the condensate solutions. The electrochemical test results indicate that 304 stainless steels oxidized in the presence or absence of urea show passive corrosion characteristics in the condensate solutions, whereas 439 stainless steels oxidized under both conditions tend to active corrosion. Corrosion product films on the specimen surfaces may be damaged during the oxidation and immersion cycles, which give rise to the formation of some pits on the specimens. As urea is added into the exhaust gas, it can promote the oxidation processes of both 304 and 439 stainless steel. As a result, the general corrosion processes of both stainless steels are accelerated by the urea addition, but the localized corrosion processes are inhibited to a certain extent.

Key wordsautomotive exhaust system    corrosion    SCR    urea    stainless steel
    
ZTFLH:  TG174.2  

引用本文:

王士栋,韩沛洪,马荣耀,李谋成,沈嘉年. 尿素对模拟汽车废气环境中不锈钢冷凝液腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 41-46.
WANG Shidong, HAN Peihong, MA Rongyao, LI Moucheng, SHEN Jianian. Effect of Urea on Condensates Corrosion of Stainless Steels in Simulated Automotive Exhaust Environments. Journal of Chinese Society for Corrosion and protection, 2013, 33(1): 41-46.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I1/41

[1] Girard J W, Montreuil C, Kim J, et al. Technical advantages of vanadium SCR systems for diesel NOx control in emerging markets[J]. SAE Int. J. Fuels Lubr., 2009, 1(1): 488-494
[2] Koebel M, Elsener M, Kleemann M. Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines[J]. Catal. Today, 2000, 59(3-4): 335-345
[3] Koebel M, Strutz E O. Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: thermochemical and practical aspects[J]. Ind. Eng. Chem. Res., 2003, 42(10): 2093-2100
[4] Schaber P M, Colson J, Higgins S, et al. Thermal decomposition (pyrolysis) of urea in an open reaction vessel[J]. Thermochim. Acta, 2004, 424(1-2): 131-142
[5] Inoue Y, Kikuchi M. Present and future trends of stainless steel for automotive exhaust system [J]. Nippon Steel Tech. Report, 2003, 88: 62-69
[6] Floyd R, Kotrba A, Martin S, et al. Material corrosion investigations for urea SCR diesel exhaust systems[A]. SAE 2009 Commercial Vehicle Engineering Congress & Exhibition[C]. Rosemont, doi: 10.4271/2009-01-2883
[7] Nockert J, Nyborg L, Norell M. Corrosion of stainless steels in simulated diesel exhaust environment with urea[J]. Mater. Corros., 2011, doi: 10.1002/maco.201005783
[8] Nockert J, Norell M. Corrosion at the urea injection in SCR-system during component test[J]. Mater. Corros., 2011, DOI: 10.1002/maco.201005983
[9] AK Steel Corporation. Aluminized steel type 1 stainless 409 and 439 [A]. Product Data Bulletin [C]. West Chester, 2007: 1-6
[10] Wang J, Cao C N, Lin H C. Features of AC impedance of pitting corroded electrodes during pits propagation[J]. J. Chin. Soc. Corros. Prot., 1989, 9(4): 271-279
(王佳,曹楚南,林海潮.孔蚀发展期的电极阻抗频谱特征[J].中国腐蚀与防护学报, 1989, 9(4): 271-279)
[11] Wei B M. Metal Corrosion Theory and Application [M]. Beijing: Chemical Industry Press, 1984
(魏宝明.金属腐蚀理论及应用[M]. 北京:化学工业出版社, 1984)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.