Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (1): 10-16    
  综述 本期目录 | 过刊浏览 |
深海钢铁材料的阴极保护技术研究及发展
李成杰,杜敏
中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
Research and Development of Cathodic Protection for Steels in Deep Seawater
LI Chengjie, DU Min
The Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering ,Ocean University of China, Qingdao 266100, China
全文: PDF(7170 KB)  
摘要: 

综述深海环境中溶解氧、温度、pH值、碳酸盐及压力等对钢铁材料的阴极保护及钙质沉积层形成过程的影响。对国内外深海钢铁材料的阴极保护研究工作进行总结,介绍深海阴极保护参数的设计及应注意的因素,认为提高初始电流密度和阴极保护联合涂层是深海阴极保护的重要保护措施。最后对现阶段深海阴极保护研究中的不足及发展方向进行探讨。

关键词 深海钢铁材料阴极保护电流密度氢脆涂层    
Abstract

The influences of dissolved oxygen, temperature, pH, carbonate and pressure in deep seawater on the cathodic protection of steel materials and the formation of calcareous deposits were reviewed. Meanwhile, overseas and domestic research status on the cathodic protection for steel materials in deep seawater was summarized. Furthermore, the parameters of the deep seawater cathodic protection design were introduced. It was proposed that it was an important measure to increase the initial current density for deep seawater cathodic protection and also with the coating. Finally, the inadequacies of the research currently on the deep seawater cathodic protection and the development direction were discussed.

Key wordsdeep seawater    steel materials    cathodic protection    current density    hydrogen embrittlement    coating
    
ZTFLH:  TG174.41  

引用本文:

李成杰,杜敏. 深海钢铁材料的阴极保护技术研究及发展[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
LI Chengjie, DU Min. Research and Development of Cathodic Protection for Steels in Deep Seawater. Journal of Chinese Society for Corrosion and protection, 2013, 33(1): 10-16.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I1/10

[1] Li R P, Xie Y H, Shu Z. A review on the technical development of deep water offshore platform [J]. China Offshore Platform, 2003, 18(3): 1-5
(李润培, 谢永和, 舒志. 深海平台技术的研究现状与发展趋势[J]. 中国海洋平台, 2003, 18(3): 1-5)
[2] NACE Standard RP0176-2003, Corrosion control of steel fixed offshore structures associated with petroleum production [S].
[3] Recommended Reactive DNV-RP-B401, Cathodic protection design [S].
[4] Fischer K P. Deep water: considerations of the cathodic protection design basis [A]. Offshore Technology Conference [C]. Houston: 1999
[5] Hou J, Guo W M, Deng C L. Influences of deep sea environmental factors on corrosion behavior of carbon steel [J]. Equip. Environ. Eng., 2008, 5(6): 6-9
(侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响 [J]. 装备环境工程, 2008, 5(6): 6-9)
[6] Cao Z Y. Study for calcareous deposits under initial cathodic protection in simulated deep ocean environment [D]. Qingdao: Ocean University of China, 2010
(曹振宇. 模拟深海环境阴极保护初期钙镁沉积层的研究 [D]. 青岛: 中国海洋大学, 2010)
[7] Wen G M, Zheng F Y. Calcareous deposits formation and application of cathodic protection in seawater [J]. Corros. Prot., 1995, 16(1): 14-19
(温国谋, 郑辅养. 海水中阴极保护时钙质沉积层的形成及其应用 [J]. 腐蚀与防护, 1995, 16(1): 50-53)
[8] Goolsby A D, Smith J D. Auger tension leg platform cathodic protection system [J]. Mater. Perform., 1996, 35(4): 12-17
[9] Lin S, Dexter S C. Effects of temperature and magnesium ions on calcareous deposition [J]. Corros. Sci., 1988, 44(9): 615-622
[10] Mantel K E, Hartt W H, Chen T. Substrate, surface finish, and flow rate influences on calcareous deposit structure [J]. Corrosion, 1992, 48(6): 489-500
[11] Barchiche C, Deslouis C, Festy D, et al. Characterization of calcareous deposits in artificial seawater by impedance techniques: 3-Deposit of CaCO3 in the presence of Mg (II) [J]. Electrochim. Acta, 2003, 48: 1645-1654
[12] Deslouis C, Festy D, Gil O, et al. Characterization of calcareous deposits in artificial sea water by impedance techniques—2. Deposit of Mg(OH)2 without CaCO3 [J]. Electrochim. Acta, 2000, 45(12-13): 1837-1845
[13] Brown B F, Foreson B W, Lennos T J, et al. Marine corrosion studies: stress corrosion cracking, deep ocean technology, cathodic protection, corrosion fatigue [A]. Third interim report of progress [C]. US: US Naval Research Laboratory, 1965
[14] Fischer K P, Finnegan J E. Cathodic polarization behavior of steel in seawater and the protective properties of the calcareous deposits [A]. Corrosion/89 [C]. Houston: NACE, 1989
[15] MacKay W B. Deep water testing of sacrificial anodes part 2 [A].Corrosion/75 [C]. Houston, 1975
[16] England H R, Heidersbach R H. The effects of water depth on cathodic protection [A]. Corrosion/82 [C]. Houston: NACE, 1982
[17] England H R, Heidersbach R H. Deep water effects on cathodic protection [A]. 14th Annual Offshore Technology Conference [C]. Houston: NACE 1982
[18] Tawns A, Stena C, Limited O, et al. Cathodic protection at a simulated depth of 2500 m [A]. Corrosion2000 [C]. Orlando, Fl: NACE, 2000
[19] Li C J, Du M, Li Y, et al. The influences of protection potentials on the formation of calcareous deposits in dynamic seawater [J]. Periodical Ocean Univ. Chin., 2011, 41(7/8): 149-153
(李成杰, 杜敏, 李妍等. 动态海水中保护电位对钙质沉积层形成的影响 [J]. 中国海洋大学学报, 2011, 41(7/8): 149-153)
[20] Fischer K P, Sydberger T, Lye R. Field testing of deep water cathodic protection on the Norwegian Continental Shelf [J]. Mater. Perform., 1988, 27(1): 49-56
[21] Finegan J E, Fischer K P. Calcareous deposits: calcium and magnesium ion concentrations [A]. Corrosion/89 [C]. Houston: NACE, 1989
[22] Chen S, Hartt W H. Deepwater cathodic protection. Part 1: laboratory simulation experiments [J]. Corrosion, 2002, 58(1): 38-48
[23] Goolsby A D, Wolfoson S L. Extended cathodic protection monitoring of one of the world's deepest fixed offshore platforms-Bullwinkle [A]. Corrosion/98 [C]. Houston: NACE, 1998
[24] Fischer K P, Espelid B, Veritas D N. A review of cp current demand and anode performance for deepwater [A]. Corrosion 2001 [C]. Houston: NACE, 2001
[25] Chen S, Hartt W H, Wolfson S. Deep water cathodic protection. Part 2: field deployment results [J]. Corrosion, 2003, 59(8): 721-732
[26] Fischer K P, Sydberger T. In-situ testing of cathodic protection on the Northern Norwegian Continental Shelf [A]. Corrosin/84 [C]. Houston: NACE, 1984
[27] Fischer K P. Field testing of CP current requirements at depths down to 1300 m on the Norwegian Continental Shelf from 63 to 67°N [A]. Corrosion/99 [C]. Houston: NACE, 1999
[28] Fischer K P, Thomason W H, Eliassen S. CP in deep water: The importance of calcareous deposits and the environmental conditions [A]. Corrosion/96 [C]. Houston: NACE, 1996
[29] Zuo J Y. Stress Corrosion Cracking [M]. Xi'an: Xi'an Jiaotong Universtiy Press,1985
(左景伊. 应力腐蚀破裂 [M]. 西安: 西安交通大学出版社, 1985)
[30] ISO.155892-2-2002, Petroleum and natural gas industries- Cathodic protection of pipeline transportation systems. Part 2: Offshore pipelines [S].
[31] EN.12954-2001, Cathodic protection of buried or immersed metallic structures- General principles and application for pipelines [S].
[32] NACE. SP0169- 2007, Standard practice- control of external corrosion on underground submerged metellic piping systems[S].
[33] Zhang T, Sun X L, Chen J S, et al. Role of hydrogen in stress corrosion cracking of high strength pipeline steel [J]. Pipeline Technique Equip., 2004, (2): 33-35
(张涛, 孙欣岭, 陈居术等. 氢在高强度管道钢应力腐蚀中的作用 [J]. 管道技术与设备, 2004, (2): 33-35)
[34] Hansung K, Popov B N, Chen K S. Comparison of corrosion-resistance and hydrogen permeation properties of Zn-Ni, Zn-Ni-Cd and Cd coatings on low-carbon steel [J]. Corros. Sci., 2003, 45(47): 1505-1521
[35] Shu D L. Mechanical Properties of Engineering Materials [M]. Beijing: Mechanical Industry Press, 2003
(束德林. 工程材料力学性能 [M]. 北京: 机械工业出版社, 2003)
[36] Zhang L. Study on the cathodic protection process and susceptibility of hydrogen embrittlement of X70 steel in simulated deep ocean environment [D]. Qingdao: Ocean University of China, 2011
(张林. 模拟深海环境X70钢阴极保护过程及其氢脆敏感性研究 [D]. 青岛: 中国海洋大学, 2011)
[37] Festy D. Cathodic protection of steel in deep sea: Hydrogen embrittlement risk and cathodic protection criteria [A]. Corrosion/2001 [C]. Houston: NACE, 2001
[38] Fairhurst D. Offshore cathodic protection: what we have learnt [J]. J. Corros. Sci. Eng., 2003, 4(6): 1-17
[39] Britton J N. External corrosion control and corrosion inspection of deepwater pipelines [A]. The 2nd International Deepwater Pipeline Technology Conference [C]. New Orleans: 1999
[40] Britton J N. Cathodic protection design in deep water, be safe not sorry [A]. Corrosion/99 [C]. San Antonio: NACE, 1999
[41] Liu X J. Anticorrosion coating technology and its progress in ocean environment[J]. Modern Paint Finish., 2010, 13(4): 20-22
(刘晓建. 海洋环境中的防腐蚀涂层技术及发展 [J]. 现代涂料与涂装, 2010, 13(4): 20-22)
[42] Wolfson S L. Corrosion control of subsea piping systems using thermal sprayed aluminum coatings [J]. Mater. Perform., 1996, 35(7): 32-36
[43] Du Y X, Zhang G Z, Li J. Numerical calculation of cathodic protection potential distribution [J]. J. Chin. Soc. Corros. Prot., 2008, 28(1): 53-58
(杜艳霞, 张国忠, 李健. 阴极保护电位分布的数值计算 [J]. 中国腐蚀与防护学报, 2008, 28(1): 53-58)
[44] Wang A P, Du M, Lu C S, et al. Finite element method for an offshore platform with complex nodes with a cathodic protection system [J]. Period. Ocean Univ. Chin., 2007, 37(1):129-134
(王爱萍, 杜敏, 陆长山等. 海洋平台复杂节点阴极保护电位分布的有限元法计算 [J]. 中国海洋大学学报, 2007, 37(1): 129-134)
[45] Wang X T, Hou B R,Li Y. Boundary element method for the cathodic protection in sea mud [J]. Marine Sci., 2006, 30(12): 2-4
(王秀通, 侯保荣, 李焰. 海泥环境中阴极保护的边界元计算 [J]. 海洋科学, 2006, 30(12): 2-4)
[46] Santiago J, Telles J C F. A solution technique for cathodic protection with dynamic boundary conditions by the boundary element method [J]. Adv. Eng. Software, 1999, 30: 663-671
[47] Montoya R, Galván J C, Genesca J. Using the right side of Poisson's equation to save on numerical calculations in FEM simulation of electrochemical systems [J]. Corros. Sci., 2011, 53(5): 1806-1812
[48] Chen G Z, Wang H R. Cathodic protection and anti-corrosion technology for marine structure [J]. Corros. Prot., 2008, 29(z1): 14-19
(陈光章, 王洪仁. 海洋结构中的阴极保护防腐蚀技术 [J]. 腐蚀与防护, 2008, 29(z1): 14-19)
[1] 刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] 任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[5] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[6] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[7] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[9] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[10] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[11] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[12] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[13] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[14] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[15] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.