Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (4): 349-352    
  研究报告 本期目录 | 过刊浏览 |
含羟基双子表面活性剂在CO2饱和盐水溶液中对Q235钢的缓蚀性能
赵景茂,李俊
北京化工大学材料科学与工程学院 北京 100029
GEMINI SURFACTANTS CONTAINING HYDROXYL GROUP AS CORROSION INHIBITORS FOR Q235 STEEL IN BRINE SOLUTION SATURATED BY CO2
ZHAO Jingmao, LI Jun
School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029
全文: PDF(1727 KB)  
摘要: 合成了4种不同链长的n-3OH-n(n=12,14,16,18)型双子表面活性剂,并用静态失重法、动电位极化和电化学阻抗谱技术研究了其在CO2饱和的盐水溶液中对Q235钢的缓蚀作用。结果表明,在60℃时4种表面活性剂对Q235钢均表现出一定的缓蚀效果。其中,12-3OH-12和14-3OH-14缓蚀效果更为显著。动电位极化曲线表明n-3OH-n(n=12,14,16,18)型双子表面活性剂是一种阴极阳极共同抑制但以阳极抑制为主的混合型缓蚀剂。电化学阻抗测试与极化曲线和失重法得到的结论基本一致。
关键词 双子表面活性剂CO2腐蚀缓蚀剂吸附    
Abstract:Four gemini surfactants n-3OH-n (n=12, 14, 16, 18) were synthesized and their corrosion inhibition performance for Q235 steel in brine solution saturated by CO2 was investigated by mass loss method, polarization curves and electrochemical impedance spectroscopy (EIS). The results indicated that gemini surfactants act as good corrosion inhibitor. Among four surfactants, 12-3OH-12 and 14-3OH-14 are better than the others. Potentiodynamic polarization curves clearly reveal that the gemini surfactants belong to mixed type inhibitors which preferentially restrain the anodic process of corrosion. The values of inhibition efficiency obtained from mass loss measurements, potentiodynamic polarization measurements and EIS measurements are in good agreement.
Key wordsgemini surfactants    CO2 corrosion    corrosion inhibitor    adsorption
收稿日期: 2011-06-20     
ZTFLH: 

TG174.42

 
基金资助:

国家自然科学基金(51171013)资助

通讯作者: 赵景茂     E-mail: jingmaozhao@126.com
Corresponding author: ZHAO Jingmao     E-mail: jingmaozhao@126.com
作者简介: 赵景茂,男,1965年生,博士,研究方向为材料腐蚀与防护r

引用本文:

赵景茂,李俊. 含羟基双子表面活性剂在CO2饱和盐水溶液中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(4): 349-352.
DIAO Jing-Mao. GEMINI SURFACTANTS CONTAINING HYDROXYL GROUP AS CORROSION INHIBITORS FOR Q235 STEEL IN BRINE SOLUTION SATURATED BY CO2. J Chin Soc Corr Pro, 2012, 32(4): 349-352.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I4/349

[1] Ai J Z, Mei P, Guo X P. Adsorption behavior of imidazoline inhibition on carbon steel in CO2 saturated NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2012, 31(4): 305-308

    (艾俊哲, 梅平, 郭兴蓬. 饱和CO2盐水溶液中咪唑啉缓蚀剂在碳钢表面上的吸附行为[J]. 中国腐蚀与防护学报, 2011, 31(4): 305-308)

[2] Ma W H, Pei X H, Gao F, et al. Corrosion behaviors of N80 in simulated water from deep gaswell containing CO2[J]. J. Chin. Soc. Corros. Prot., 2007, 27(1): 8-13

    (马文海, 裴晓含, 高飞等. N80钢在模拟深层气井水溶液中的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2007, 27(1): 8-13)

[3] Li X W, Gao Y M. Present situation and protection methods of CO2 corrosion [J]. Corros. Sci. Prot. Technol., 2009, 21(6): 553-555

    (李晓伟, 高延敏. CO2腐蚀的研究现状及其控制措施[J]. 腐蚀科学与防护技术, 2009, 21(6): 553-555)

[4] Tajima K, Imai Y, Ikeda I. Specific surface activity of gemini surfactants: mixing effects of alanine-type and sulfate-type surfactants [J]. J. Oleo. Sci., 2001, 50(5): 453-462

[5] Menger F M, Keiper J S. Gemini surfactants [J]. Angew. Chem. Int. Ed., 2000, 39(11): 1906-1920

[6] Qiu L G, Wang Y M, Jiang X. Synergistic effect between cationic gemini surfactant and chloride ion for the corrosion inhibition of steel in sulphuric acid [J]. Corros. Sci., 2008, 50(2): 576-582

[7] Morsi M S, Barakat Y F, El-Sheikh R, et al. Corrosion inhibition of mild steel by amploteric surfactants derived from aspartic acid [J]. Mater. Corros., 1993, 44(7): 304-308

[8] El Achouri M, Kertit S, Gouttaya H M, et al. Synthesis of some cationic gemini surfactants and their inhibitive effect on iron corrosion in hydrochloric acid medium [J]. Corros. Sci., 2001, 43: 19-35

[9] Yang J Z, Miao Z C, Xu L. Synthesis of 18-3-18 gemini cationic surfactant with novel way [J]. Fine Chem., 2005, 22(suppl.1): 50-52

    (杨建洲, 苗宗成, 徐亮. 18-3-18型Gemini阳离子表面活性剂的合成[J]. 精细化工, 2005, 22(suppl.1): 50-52)

[10] Fu W, Liang L, Zheng J S, et al. Synthesis and properties of Gemini imidazoline quaternary ammonium salts as corrosion inhibitor [J]. Chin. Appl. Chem., 2009, 26(12): 1422-1427

     (付薇, 梁亮, 郑敬生等. Gemini型咪唑啉双季铵盐金属缓蚀剂的合成及其性能[J]. 应用化学, 2009, 26(12): 1422-1427)

[11] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemistry Industry Press, 1994

     (曹楚南. 腐蚀电化学[M]. 北京: 化学工业出版社, 1994)

[12] Suzuki K. The study of inhibitor for sour gas service [J]. Corrosion, 1982, 38(7): 384-389
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[8] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[9] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[12] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[13] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[14] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[15] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.