Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (4): 343-348    
  研究报告 本期目录 | 过刊浏览 |
海水环境中弧菌对45钢腐蚀行为及力学性能的影响
吴进怡,罗琦,肖伟龙,柴柯,曹阳
海南优势资源化工材料应用技术教育部重点实验室 海南大学材料与化工学院 海口 570228
INFLUENCE OF VIBRIO ON CORROSION BEHAVIORS AND MECHANICAL PROPERTIES OF 45 STEEL IN SEAWATER
WU Jinyi, LUO Qi, XIAO Weilong, CHAI Ke, Cao Yang  
Key Laboratory of Ministry of Education for Application Technology of Chemical Materials in Hainan Superior Resources, Material and Chemical Engineering College, Hainan University, Haikou 570228
全文: PDF(1120 KB)  
摘要: 通过热带海洋气候条件下在海水中培养弧菌,并对比45钢在自然海水、无菌海水和弧菌海水中的腐蚀行为,研究了弧菌对45钢腐蚀行为及力学性能的影响。结果表明,弧菌可以接种于海水中大量培养至高浓度(非培养基中培养),避免了培养基成分的缓蚀作用,从而更接近碳钢的自然腐蚀状态。海水中弧菌对45钢的平均腐蚀速率及力学性能有显著的影响。弧菌能加速45钢的平均腐蚀速率,但微生物的协同作用比单种弧菌更能加速材料的平均腐蚀速率。弧菌能显著降低局部pH值,引起材料表面严重的局部腐蚀,材料表面局部腐蚀促使其在拉伸过程中应力集中而发生断裂。
关键词 海水弧菌45钢腐蚀力学性能    
Abstract:It has been found that microbiologically influenced corrosion (MIC) plays a significant role in corrosion process of steels exposed in marine environment. Microbe can produce pitting, crevice corrosion, selective dealloying and stress-oriented hydrogen-induced cracking, which accelerates both localized and average corrosion rates of carbon steel. Wu et al. reported that when the corrosion time is 365 d, the average corrosion depth of 25 steel in natural seawater is 2.6 times higher than that in sterile seawater, and localized attack is also observed on the specimens immersed in natural seawater. Preliminary work also shows that Vibrio is the key component of microbe in the corrosion product. The research on the single effect of Vibrio on the corrosion behaviors and mechanical properties of metal is insufficient up to now. In this work, Vibrio is cultured in seawater. 45 steel coupons are immersed in three different mediums in tropic condition: natural seawater, sterile seawater and Vibrio-containing seawater. The results show that instead of culturing in culture medium, Vibrio can be cultured in seawater to a high concentration, which avoid the corrosion inhibitor behavior from culture medium and near natural corrosion condition. The activity of Vibrio at the interface accelerates the average corrosion rate for 45 steel. Coupons immersed in natural seawater show faster average corrosion rate than in Vibrio-containing seawater due to microbial synergy. Vibrio is acid-producing bacteria which can decrease the local pH value and cause significant local corrosion. Local corrosion in the surface of metal would lead to stress concentration on the local corrosion site and cut down the tensile strength of material.
Key wordsseawater    Vibrio    45 steel    corrosion    mechanical properties
收稿日期: 2011-09-16     
ZTFLH: 

TG172.5

 
基金资助:

国家自然科学基金(50761004和51161007)、海南省自然科学基金(510204和511112)、海南大学2005和2009 年科研项目(Kyjj0536和hd09xm77)资助

通讯作者: 吴进怡     E-mail: wujinyi1976@yahoo.com.cn
Corresponding author: WU Jinyi     E-mail: wujinyi1976@yahoo.com.cn
作者简介: 吴进怡,女,1976年生,副教授,研究方向为热带海洋气候下金属的生物腐蚀与防护

引用本文:

吴进怡,罗琦,肖伟龙,柴柯,曹阳. 海水环境中弧菌对45钢腐蚀行为及力学性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 343-348.
WU Jin-Yi, XIAO Wei-Long, CI Ke, YANG Yu-Hui. INFLUENCE OF VIBRIO ON CORROSION BEHAVIORS AND MECHANICAL PROPERTIES OF 45 STEEL IN SEAWATER. J Chin Soc Corr Pro, 2012, 32(4): 343-348.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I4/343

[1] Little B, Wagner P. Myths related to microbiologically influenced corrosion [J]. Mater. Perform., 1997, 36(6): 40-44

[2] Little B, Wagner P. Factors influencing the adhesion of microorganisms to surfaces [J]. J. Adhesion, 1986, 20(3): 187-210

[3] Li X B, Wang W, Wang J, et al. Effect of biofilms on metal corrosion in sea water [J]. Corros. Sci. Prot. Technol., 2002, 14(4): 218-222

    (李相波, 王伟, 王佳等. 海水中微生物膜的生长对金属腐蚀过程的影响 [J]. 腐蚀科学与防护技术, 2002, 14(4): 218-222)

[4] Jung H G, Yoo J Y, Woo J S. The microbiologically influenced corrosion behavior of C-Mn ship structural steel with different manufacturing processes [J]. ISIJ Int., 2003, 43(10): 1603-1610

[5] Mathiyarasu J, Palaniswamy N, Muralidharan V S. Corrosion resistance of cupronickels - an overview [J]. Corros. Rev., 2000, 18(1): 65-103

[6] Wu J Y, Chai K, Xiao W L, et al. The single effect of microbe on the corrosion behaviors of 25 steel in seawater [J]. Acta Metall. Sin., 2010, 40(6): 755-760

    (吴进怡, 柴柯, 肖伟龙等. 25钢在热带海洋环境下海水中的微生物单因素腐蚀[J]. 金属学报, 2010, 40(6): 755-760)

[7] Wu J Y, Xiao W L, Chai K, Yang Y H. The single effect of microbe on the corrosion behaviors of 45 steel in seawater in tropic condition [J]. Acta Metall. Sin., 2010, 46(1): 118-122

    (吴进怡, 肖伟龙, 柴柯等. 热带海洋环境下海水中微生物对45钢腐蚀行为的单因素影响[J]. 金属学报, 2010, 46(1): 118-122)

[8] Xiao W L, Chai K, Wu J Y, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition [J]. J. Chin. Soc. Corros. Prot., 2010, 30(5): 359-363

    (肖伟龙, 柴柯, 吴进怡等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30(5): 359-363)

[9] Yang Y H, Xiao W L, Chai K,et al. The composition of bacteria in the corrosion product of carbon steel with different carbon content immersed in seawater for different time[J]. J. Chin. Soc. Corros. Prot., 2011, 31(4): 294-298

    (杨雨辉, 肖伟龙, 柴柯等. 碳含量和浸泡时间对碳钢热带自然海水腐蚀产物中细菌组成的影响 [J]. 中国腐蚀与防护学报, 2011, 31(4): 294-298)

[10] Buchanan R E, Gibbons N E. Bergey$^{\prime}$s Manual of Determinative Bacteriology(8 th Ed.,)[M]. Baltimore, Maryland: The Williams and Wilkins Company, 1974

[11] Liu G Z, Wu J H. Advances in the study of microbiologically influenced corrosion in marine environment [J]. Corros. Prot., 2001, 22(10): 430-433

     (刘光洲, 吴建华. 海洋微生物腐蚀的研究进展[J]. 腐蚀与防护. 2001, 22(10): 430-433)

[12] Edgar J P, Roman C S, Ignacio G F R V. Influence of Desulfo Vibrio sp. biofilm on SAE 1018 carbon steel corrosion in synthetic marine medium [J]. Corros. Sci., 2007(49): 3580-3597

[13] Cheng S, Tian J T, Chen S G, et al Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: I. Corrosion behavior [J]. Mater. Sci. Eng., 2009, C29(3): 751-755

[14] Wang Q F, Song S Z. Progress in marine biologically influenced corrosion study [J]. J. Chin. Soc. Corros. Prot., 2002, 22(3):184-188

     (王庆飞, 宋诗哲. 金属材料海洋环境生物污损腐蚀研究进展[J]. 中国腐蚀与防护学报, 2002, 22(3): 184-188)

[15] Ying Y M, Zhou R Y, Yang C H, et al. Study on the growth of biofilms and microbiological erosions on the inner wall of circulating cooling water transportation pipe [J]. Water and Wastewater Eng., 2008, 34(6): 117-121

     (应一梅, 周瑞云, 杨崇豪等. 循环冷却水输水管壁生物膜生长发育及微生物腐蚀问题研究[J]. 给水排水, 2008, 34(6): 117-121)

[16] Little B, Wagner P, Mansfeld F. Microbiologically influenced corrosion of metals and alloys [J]. Int. Mater. Rev., 1991, 36 (6):253-272

[17] Xu C M, Zhang Y H, Cheng G X, et al. Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria [J]. Mater. Sci. Eng., 2007, A443: 235-241
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.