Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (6): 453-456    
  研究报告 本期目录 | 过刊浏览 |
硫酸盐还原菌模拟生物膜对907A钢腐蚀的影响
段东霞1,2,陈西广1,蔺存国2
1. 中国海洋大学海洋生命学院 青岛 266003
2. 中国船舶重工集团公司第七二五研究所青岛分部海洋腐蚀与防护国防科技重点实验室 青岛 266101
907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM
DUAN Dongxia1,2, CHEN Xiguang1, LIN Cunguo2
1. College of Marine Science, Ocean University of China, Qingdao 266003
2. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101
全文: PDF(1574 KB)  
摘要: 根据生物膜的结构特征,以硫酸盐还原菌和琼脂的混合物沉积于907A钢表面,形成人工模拟生物膜,采用微电极研究了模拟生物膜下溶解氧的分布情况,采用环境扫描电镜和能谱表征了模拟生物膜下907A钢在不同环境中的腐蚀情况。研究结果表明在人工模拟生物膜内,距离金属材料表面越近,溶氧量越低;金属材料的腐蚀情况受环境影响,当环境中富含还原性物质且SRB生长旺盛时, 907A钢腐蚀严重,腐蚀产物以硫化铁为主,当环境中缺乏还原性物质且SRB生长不良时, 907A钢的腐蚀产物以铁氧化物为主。
关键词 硫酸盐还原菌生物膜微生物腐蚀微电极    
Abstract:Biofilm is one of the main factors that influence metal corrosion. According to the structure and property of biofilm, the compound of natural biopolymer agar and SRB cells were deposited on 907A surface. Artificial biofilm was produced. The dissolved oxygen concentration in artificial biofilm was studied by microsensors. Environmental scanning electron microscopy (ESEM) and energy dispersive X-ray detector (EDAX) were used to study 907A corrosion under artificial biofilm. The result indicated that the oxygen concentration became lower and lower with the distance between metal surface and test location becoming small. The corrosion morphology and corrosion products of 907A were influenced by environment.
Key wordssulfate reducing bacteria    biofilm    microbiologically influenced corrosion    microsensor
收稿日期: 2010-08-16     
ZTFLH: 

TG172.5

 
基金资助:

船舶基金项目(08J1.5.6)资助

通讯作者: 段东霞     E-mail: duandx@sunrui.net
Corresponding author: DUAN Dongxia     E-mail: duandx@sunrui.net
作者简介: 段东霞,女,1976年生,博士,研究方向为生物腐蚀与污损研究

引用本文:

段东霞,陈西广,蔺存国. 硫酸盐还原菌模拟生物膜对907A钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
DUAN Dong-Xia, LIN Cun-Guo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM. J Chin Soc Corr Pro, 2011, 31(6): 453-456.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I6/453

[1] Angell P. Understanding microbially influenced corrosion as biofilm-medited changes in surface chemistry[J]. Curr. Opin. Biotechnol., 1999, 10(3): 269-272

[2] Duan J Z, Wu S Z, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J].Electrochim. Acta, 2008,54(1): 22-28

[3] Li F S, An M Z, Liu G Z, et al. Roles of sulfur-containing metabolites by SRB in accelerating corrosion of carbon steel[J].Chin. J. Inorg. Chem., 2008, 25(1): 13-18

    (李付绍, 安茂忠, 刘光洲等. 硫酸盐还原菌的含硫代谢产物在加速碳钢腐蚀中的作用[J]. 无机化学学报, 2008, 25(1): 13-18)

[4] Li F S, An M Z, Liu G Z, et al. Effects of sulfidation of passive film in the presence of SRB on the pitting corrosion behaviors of stainless steels[J]. Mater. Chem. Phys., 2009,113(2-3): 971-976

[5] Ismai K M, Jayaraman A, Wood T K, et al. The influence of bacteria on the passive film stability of 304 stainless steel [J].Electrochim. Acta, 1999, 44(26): 4685-4692

[6] Liu J H, Liang X, Li S M. Study of microbiologically induced corrosion action on Al-6Mg-Zr and Al-6Mg-Zr-Sc[J]. J. Rare Earth, 2007, 25(5): 609-614

[7] Zheng Q, Li J, Du Y L, et al. Influence of sulfate reducing bacteria on corrosion behavior of HSn70-10A alloy[J]. J.Chin. Soc. Corros. Prot., 2008,28(1): 38-43

     (郑强, 李进,杜一立等. 硫酸盐还原菌对HSn70-1A铜合金电化学腐蚀行为的影响[J].中国腐蚀与防护学报, 2008, 28(1): 38-43)

[8] Kuhl M, Steuckart C, Eicker G, et al. A H2S microsensor for profiling biofilms and sediments: application inanacidic lake sediment[J]. Aquat Microb Ecol., 1998,15: 201-209

[9] Yu T, de la Rosa C, Lu R. Microsensor measurement of oxygen concentration in biofilms: from one dimension to three dimensions[J]. Water Sci. Technol., 2004, 49(11-12): 353-358

[10] Xiang J, Sun Z, Xia J X, et al. Formation and characteristic of acinetobacter baumannii bacterial biofilm oninner surfaces of endotracheal tubes of burn patients[J]. J. Shanghai Jiaotong Univ., 2010, 30(5): 562-565

     (向军, 孙珍, 夏俊星等.烧伤患者气管管套内鲍曼不动杆菌生物膜形成及特征研究[J].上海交通大学学报, 2010, 30(5): 562-565)

[11] Miyanaga K, Terashi R, Kawai H, et al. Biocidal effect of cathodic protection on bacterial viability inbiofilm attached to carbon steel[J]. Biotechnol. Bioeng., 2007, 97: 850-857

[12] Wang Q F, Sui J, Su R X, et al. Study on steel corrosion in simulated biofilm environment in seawater[J]. J. Electronchem.,1999, 5(1): 55-58

     (王庆飞, 隋静, 苏润西等.模拟生物膜方法研究钢在海水中的腐蚀行为[J]. 电化学, 1999, 5(1):55-58)

[13] Zhao X D, Duan J Z, Wu S R, et al. Formation and transformation of surface corrosion products of Q235 steel influenced by sulfate-reducing bacteria in seawater[J]. J. Chin.Soc. Corros. Prot., 2008, 28: 299-302

     (赵晓栋, 段继周,武素茹等. 海水中硫酸盐还原菌作用下Q235钢表面腐蚀产物的形成和转化[J].中国腐蚀与防护学报, 2008, 28: 299-302
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[6] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[7] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[8] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[9] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[10] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[11] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[12] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[13] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[14] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[15] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.