Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (6): 431-435    
  研究报告 本期目录 | 过刊浏览 |
一种预测异径管流动加速腐蚀速率的新模型
陆晓峰,朱晓磊,凌祥
南京工业大学机械与动力工程学院 南京 210009
A NOVEL MODEL FOR PREDICTING FLOW ACCELERATED CORROSION RATE IN REDUCER
LU Xiaofeng, ZHU Xiaolei, LING Xiang
School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009
全文: PDF(1137 KB)  
摘要: 通过将稳态传质模型和一维电偶腐蚀模型耦合,提出了预测异径管流动加速腐蚀速率的新模型。该模型先由稳态传质模型得到异径管近壁面处的自腐蚀电流密度分布和速度极值点处的自腐蚀电位,而后将极值点处自腐蚀电位代入到一维电偶腐蚀模型中,计算该壁面处的电偶腐蚀电流密度。应用此新模型对某一异径管流动加速腐蚀速率进行计算,发现异径管大端的腐蚀电流密度比小端腐蚀电流密度大两个数量级,据此可以解释台湾某核电站蒸汽冷凝水管线统计得出异径管大端出现最大减薄量的现象。与壁面剪切应力理论和稳态传质理论计算流动加速腐蚀速率分布相比,该模型的计算结果更贴近实际情况。
关键词 流动加速腐蚀异径管电偶腐蚀预测模型    
Abstract:A new prediction model was proposed to calculate the flow accelerated corrosion (FAC) rate in reducer, which was coupled the steady-state mass transfer model electrochemical theory and one-dimensional galvanic corrosion model. Firstly, the steady-state mass transfer model was used to obtain the distribution of concentration polarization current density and the concentration polarization corrosion potential of velocity extreme point near the wall of reducer. The galvanic corrosion current density was calculated by substituting the potential into one-dimensional galvanic corrosion model. The new model was employed to calculate the reducer; the results showed that the corrosion current density of large-end was larger two orders than that of small-end. Compared with the FAC rate calculated by the wall shear stress theory, presented by Efird and Cheng, or by purely steady-state mass transfer theory, the results obtained by the new model have good agreement with the practical situation which were counted 2000 pipe fittings in Taiwan nuclear power plant by Kuen Ting. The statistical result showed that the large-end of reducer appeared the maximum of reduction of thickness.
Key wordsflow-accelerate-corrosion    reducer    galvanic corrosion    prediction model
收稿日期: 2010-11-19     
ZTFLH: 

TG174

 
通讯作者: 陆晓峰     E-mail: xflu@njut.edu.cn
Corresponding author: LU Xiaofeng     E-mail: xflu@njut.edu.cn
作者简介: 陆晓峰,1966年生,男,副教授,研究方向为过程装备的腐蚀与防护

引用本文:

陆晓峰,朱晓磊,凌祥. 一种预测异径管流动加速腐蚀速率的新模型[J]. 中国腐蚀与防护学报, 2011, 31(6): 431-435.
LU Xiao-Feng, ZHU Xiao-Lei, LING Xiang. A NOVEL MODEL FOR PREDICTING FLOW ACCELERATED CORROSION RATE IN REDUCER. J Chin Soc Corr Pro, 2011, 31(6): 431-435.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I6/431

[1] Smith C L, Shah V N, Kao T, Apotolakis G. Incorporating aging effects into probabilistic risk models [R]. US Nuclear Regulatory Commission, NUREG/CR-5632, 2001

[2] Shoji T, Lu Z, Takeda Y, Sato Y. Towards proactive materials degradation management in NPP-today and future [A], CD Proceedings of the 14th Asia Pacific Corrosion Control Conference (APCCC)[C]. Shanghai, 2006: 21-24

[3] Chexal V K, Horowitz J, Dooley K B, et al. Flow-accelerated-corrosion in power plants [R]. Electric Power Research Institute, EPRI, TR-10061R1, 1981

[4] Berge J P. Effect of chemistry on corrosion-erosion of steels in water and wet stream[A], Proceeding of 2nd Conference on Water Chemistry[C]. BNES, 1980

[5] Wu P C. Erosion/corrosion induced pipe wall thinning in US nuclear power plants [R]. NUREG-1344, 1989

[6] Zheng Y G, Liu C B. Research progress on modeling and numerical simulation of flow-accelerated-corrosion [J]. Corros. Sci. Prot. Technol., 2008, 20(6): 436-439

    (郑玉贵, 刘春波.核电行业中流动促进腐蚀的模型和数值模拟研究进展[J].腐蚀科学与防护技术. 2008, 20(6): 436-439)

[7] Guimaraes A C F. A new methodology for the study of FAC phenomenon based on a fuzzy rule system [J]. An. Nucl. Energy, 2003,30: 853-864

[8] Fleming K N. Markov models for evaluating risk-informed in service inspection strategies for nuclear power plant piping systems [J]. Reliab. Eng. Syst. Saf., 2004, 83-27

[9] Uchida S, Naitoh M, Uehara Y, et al. Evaluation methods for corrosion damage of components in cooling analysis of corrosion and flow dynamics (III)-evaluation of wall thinning rate with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis[J]. J. Nucl. Sci. Technol., 2009, 46(1): 31-40

[10] Matsumura M. A case study of a pipe line burst in the Mihama Nuclear Power Plant [J]. Mater. Corros., 2006, 57(11):872-882

[11] Song G L. Potential and current distributions of one-dimensional galvanic corrosion systems [J]. Corros. Sci., 2010,52: 455-480

[12] Liu Z, Liu C B, Zheng Y G. Numerical simulation of flow-accelerated-corrosion of carbon steel in single liquid phase flow [J]. Nucl. Power Eng., 2009, 30: 48-53

     (刘忠, 刘春波,郑玉贵. 碳钢在单相流中流动加速腐蚀的数值模拟[J]. 核动力工程, 2009,30: 48-53)

[13] Hayduk W, Minhas B S. Correlation for prediction of molecular diffusivities in liquids [J]. Can. J. Chem. Eng., 1982,60(2): 295-299

[14] Efird K D, Wright E J, Boros J A, et al. Correlation of steel corrosion in pipe flow with jet impingement and rotation cylinder tests [J]. Corros. Eng., 1993, 49(2): 992-1004

[15] Zhang G A, Cheng Y F. Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated-corrosion of X65 steel in a CO2-saturated oilfield formation water [J]. Corros. Sci., 2010: 52: 2716-2724

[16] Kuen T, Yin P M. The evaluation of erosion corrosion problems of carbon steel piping in Taiwan PWR nuclear power plant [J]. Nucl. Eng. Des., 1999, 191: 231-243
[1] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[2] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[3] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[4] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[5] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[7] 刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[8] 赵欣,胡裕龙,董赋,张晓东,王智峤. 湿态电绝缘对电偶腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[9] 朱志平,银朝晖,柳森,肖剑峰. 紫铜T2在高浓度H2S模拟环境中的腐蚀行为及预测模型[J]. 中国腐蚀与防护学报, 2015, 35(4): 333-338.
[10] 魏强,李谋成,沈嘉年. 两种不锈钢在模拟消声器环境中的电偶腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(3): 233-238.
[11] 赵晓宏, 郭泉忠, 杜克勤, 郭兴华, 王勇. 不同涂层处理的汽车紧固件用ST12冷轧钢与SS400热轧钢的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 86-90.
[12] 徐宏妍, 李智勇. AZ91D镁合金电偶腐蚀的研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 298-305.
[13] 万 俐 杜 伟 李佳佳 丁 毅 陈步荣. 十八硫醇自组装膜对青铜-银电偶腐蚀的
抑制作用
[J]. 中国腐蚀与防护学报, 2013, 33(3): 245-250.
[14] 蒋穹,缪强,丁祥,魏小昕. 片状Al-Zn-Si合金粉的析氢行为与抑制剂研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 61-69.
[15] 裴和中,尹作升,张国亮,刘远勇. 2024与2124铝合金电偶腐蚀行为的对比研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 133-136.