Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (6): 419-425    
  研究报告 本期目录 | 过刊浏览 |
敏化态00Cr12Ti的动电位电化学阻抗谱特征研究
闫瑞霞,杜翠薇,刘智勇,李晓刚
北京科技大学腐蚀与防护中心腐蚀与防护教育部重点实验室 北京 100083
DYNAMIC ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY CHARACTERISTICS OF SENSITIZED STEEL 00Cr12Ti
YAN Ruixia, DU Cuiwei, LIU Zhiyong, LI Xiaogang
Corrosion and Protection Center, University of Science and Technology Beijing; Key Laboratory for Corrosion and Protection, Beijing 100083
全文: PDF(1397 KB)  
摘要: 采用双环电化学动电位再活化(DL-EPR)法和动电位电化学阻抗(DEIS)研究了敏化态铁素体不锈钢00Cr12Ti在 0.1 mol/L H2SO4+0.0001 mol/L KSCN溶液中正反向扫描过程中的电化学行为,并用等效电路图对阻抗数据进行拟合。结果表明:DEIS的变化与DL-EPR曲线上的区域相对应,都呈现出活化区、活化-钝化过渡区、钝化区和再活化区。正向扫描过程中电位0.2 V左右开始出现容抗弧变小,且低频区实部减小出现负阻抗,这主要是由于形成的钝化膜还不完整,有局部新鲜表面存在;而反向扫描过程中在0.2 V左右阻抗急剧降低,而后逐渐升高,在这个过程中低频一直存在着负阻抗,这主要是由于晶界贫铬钝化膜不稳定,发生局部溶解和修复。发生晶间腐蚀后,低频又出现了负阻抗。由于腐蚀的中间产物吸附在电极表面,低频区出现感抗弧,生成的中间产物的扩散过程为控制步骤;而且DEIS中活化区和再活化区由Rct的最小值的倒数的比值得到的敏化度(DOS)和DL-EPR曲线得到的敏化度存在着一致性。
关键词 00Cr12Ti敏化动电位电化学阻抗(DEIS)    
Abstract:In this paper, double-loop electrochemical potentiokinetic reactivation (DL-EPR) and dynamic electrochemical impedance spectroscopy (DEIS) by forward and reverse potential scan have been used to investigate sensitized ferritic stainless steel 00Cr12Ti exposed to 0.1 mol/L H2SO4+0.0001 mol/L KSCN solution and fitted with proper equivalent circuits. The results indicated that the region distribution of DEIS is in accordance with that of DL-EPR, including activation region, transition region, passivation region and reactivation region. In the passivation region, the capacity loop shrunk at about 0.2 V, and the real part of EIS curve at the low frequency decreased even became negative. The main reason is that the passive film is not complete and a part of fresh surface is exposed to the solution. In the reactivation region, before occurrence of intergranular corrosion, at about 0.2 V, the capacity loop decreased dramatically, and then gradually increased. At the low frequency the EIS displays a capacitive loop with negative resistance, this implies that the passive film suffers rupture and repair due to depletion of Cr at the grain boundary. An inductive loop which is ascribed to the adsorption of intermediate product on the electrode surface indicates that the diffusion process of the intermediate product predominated the corrosion reaction. The degree of sensitivity (DOS) expressed by the ratio of the reciprocal of the minimum Rct in the reactivation region to activation region on DEIS is the same as the DOS from DL-EPR.
Key words00Cr12Ti    sensitization    dynamic electrochemical impedance spectroscopy(DEIS)
收稿日期: 2010-09-03     
ZTFLH: 

TG174

 
基金资助:

中国电器 科学研究院工业产品环境适应性国家重点实验室开放研究项目中央高校基本科研业务费专项资金项目(FRF-TP-09-029B)资助

通讯作者: 杜翠薇     E-mail: ducuiwei@yahoo.com
Corresponding author: DU Cuiwei     E-mail: ducuiwei@yahoo.com
作者简介: 闫瑞霞,女,1986年生,硕士生,研究方向为腐蚀与防护

引用本文:

闫瑞霞,杜翠薇,刘智勇,李晓刚. 敏化态00Cr12Ti的动电位电化学阻抗谱特征研究[J]. 中国腐蚀与防护学报, 2011, 31(6): 419-425.
YAN Rui-Xia. DYNAMIC ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY CHARACTERISTICS OF SENSITIZED STEEL 00Cr12Ti. J Chin Soc Corr Pro, 2011, 31(6): 419-425.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I6/419

[1] Huang H, Liu C, Chen S, et al. Electrolyte system of EPR test for detecting sensitization in austenitic stainless steel[J].Corrosion, 1992, 48(6): 509-513

[2] Alonso-Falleiros N, Magri M, Falleiros I G S, Intergranular corrosion in a martensitic stainless steel detected by electrochemical test [J]. Corrosion, 1999, 55(8): 769-778

[3] Frangini S, Migrone A. Modified electrochemical potentiokinetic reactivation method for detecting sensitization in 12wt%Cr ferritic stainless steel [J]. Corrosion, 1992, 48(9):715-726

[4] Huang C A, Chang Y Z, Chen S C, et al. The electrochemical behavior of austenitic stainless steel with different degrees of sensitization in the transpassive potential region in 1mol/L H2SOcontaining chloride[J]. Corros. Sci., 2004, 46(6):1501-1513

[5] Fan G W, Zhang S L, Qin L Y. Impedance spectroscopy of 304 stainless steel during intergranular corrosion[J]. Res. Stud. Foundry Equip. 2007, 3, 12-15 
     (范光伟, 张寿褛, 秦丽雁.304不锈钢晶间腐蚀发展过程的阻抗谱分析[J]. 铸造设备研究. 2007, 3,12-15)

[6] Darowicki K, Krakowiak S, Slepski P. Evaluation of pitting corrosion by means of dynamic electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2004, 49(17): 2909-2918

[7] Darowicki K, Slepski P, Szoci'nski M. Application of the dynamic EIS to investigation of transport within organic coatings[J]. Prog. Org. Coat, 2005, 52(4): 306-310

[8] Darowicki K, Orlikowski J, Arutunow A, et al. The effect of tensile stresses on aluminium passive layer durability[J].Electrochim. Acta , 2006, 51(27): 6091-6096

[9] Nagarajan S, Karthega M, Rajendran N. Pitting corrosion studies of super austenitic stainless steel in natural sea water using dynamic electrochemical impedance spectroscopy[J]. J Appl.Electrochem., 2007, 37(2): 195-201

[10] Arutunow A, Darowicki K. DEIS assessment of AISI 304 stainless steel dissolution process in conditions of intergranular corrosion[J]. Electrochim. Acta, 2008, 53(13), 4387-4395

[11] Xiao J M. Metallurgy Issues of Stainless Steel [M]. Beijing: Metallurgical Industry Press. 2006

     (肖纪美.不锈钢的金属学问题[M]. 北京: 冶金工业出版社. 2006)

[12] Qin L Y, Zhang S L, Song S Z. Sensitive temperature for intergranular corrosion of typical stainless steels[J]. J. Chin.Soc. Corros. Prot., 2006, 26(1): 1-5

    (秦丽雁, 张寿褛, 宋诗哲.典型不锈钢晶间腐蚀敏化温度的研究[J]. 中国腐蚀与防护学报. 2006,26(1): 1-5

[13] Zhou D B, Liu D P, Mo C Q. Corrosion behavior of 304 stainless steel in NaCl-(NH4)2SO4-NH4Cl solution[M]. J. Chin. Soc. Corros. Prot., 2007, 27(2): 84-89

     (周德璧, 刘丹平, 莫成千.304不锈钢在NaCl-(NH4)2SO4-NH4Cl溶液中的腐蚀行为[J].中国腐蚀与防护学报. 2007, 27(2): 84-89)

[14] Zeng C L, Wang W, Wu W T. Electrochemical impedance models for molten salts induced corrosion[J]. Acta Metall. Sinica,1999, 35(7), 751-754  (曾潮流, 王文,

     (吴维tao.熔融盐热腐蚀的电化学阻抗模型[J]. 金属学报, 1999, 35(7): 751-754)

[15] Cao C N.Introduction of Corrosion Electrocehmistry Spectroscopy [M]. Beijing: Science Press, 2002

     (曹楚南.电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)

[16] T. LouCka, P. JanoS.Adsorption and oxidation of thiocyanate on a platinum electrode[J].Electrochim. Acta. 1996, 41(3), 405-410

[17] Qin L Y, Song S Z, lu Y Z. EIS characteristics of 304 stainless steel during intergranular corrosion[J]. J. Chin. Soc.Corros. Prot., 2007, 27(2): 74-79

     (秦丽雁, 宋诗哲, 卢玉琢.304不锈钢晶间腐蚀过程中的电化学阻抗谱特征[J]. 中国腐蚀与防护学报.2007, 27(2): 74-79)
[1] 吴欣强,付尧,柯伟,徐松,冯兵,胡波涛,陆佳政. 高氮奥氏体不锈钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
[2] 易雪庆 陆永浩 陈迎锋. 敏化和固溶处理对核级不锈钢Z3CN20-09M相间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 141-147.
[3] 秦丽雁; 张寿禄; 宋诗哲 . 典型不锈钢晶间腐蚀敏化温度的研究[J]. 中国腐蚀与防护学报, 2006, 26(1): 1-5 .
[4] 高中平; 陈范才; 赵常就 . EPR法评价晶间腐蚀敏感性的各种判据的比较[J]. 中国腐蚀与防护学报, 2000, 20(4): 243-247 .
[5] 梁成浩;明石正恒. 氯化物溶液中敏化304不锈钢应力腐蚀开裂的临界电位[J]. 中国腐蚀与防护学报, 1994, 14(4): 271-276.
[6] 柳昌义;吴全胜;陈慎豪;姜宏日;何畏. 恒电位脉冲法检测奥氏体不锈钢敏化[J]. 中国腐蚀与防护学报, 1994, 14(4): 291-296.