Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (5): 367-370    
  研究报告 本期目录 | 过刊浏览 |
SOFC连接体用STS444/Y合金的高温导电性能研究
金光熙1, 潘凤红1,郎成1,乔利杰2
1. 吉林化工学院理学院 吉林 132022
2. 北京科技大学材料科学与工程学院 北京 100083
ELEVATED TEMPERATURE ELECTRICAL CONDUCTIVITY OF STS444/Y ALLOY USED FOR SOFC INTERCONNECTS
JIN Guangxi1, PAN Fenghong1, LANG Cheng1,QIAO Lijie2
1. School of Sciences, Jilin Institute of Chemical Technology, Jilin 132022
2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(1414 KB)  
摘要: 以固体氧化物燃料电池(SOFC)金属连接体为研究对象,分析铁素体不锈钢STS444涂覆稀土元素Y后在750℃下的高温氧化和导电行为。利用辉光放电光谱(GDS)和二次离子质谱(SIMS)技术研究了主要元素(Fe,Cr,Mn,Si)和稀土元素Y 对氧化膜生长和高温导电性能的影响。结果表明,Y元素的活性元素效应使STS444/Y合金可以显著改善其抗氧化性和高温导电性,可作为SOFC金属连接体的候选材料。
关键词 固体氧化物燃料电池金属连接体面比电阻高温氧化    
Abstract:The aim of this study was to examine the oxidation behavior and electrical conductivities of ferritic stainless steels STS444 coated with element Y for planar SOFC (solid oxide fuel cells) interconnects at 750℃. The effects of the main elements (Fe,Cr,Mn and Si) and the rare earth element Y on the growth of oxide scale and the high temperature electrical conductivity of STS444 alloy were studied using glow discharge spectrometer (GDS) and secondary ion mass spectroscopy (SIMS) techniques. The results indicated that the reactive element effects of element Y improved noticeably the oxidation resistance and electrical conductivities, and it can be possibly used as the candidate material for the SOFC interconnects.
Key wordssolid oxide fuel cell    metallic interconnect    area specific resistance    elevated temperature oxidation
收稿日期: 2010-03-31     
ZTFLH: 

TG142

 
基金资助:

吉林省科技发展计划项目(200705C10)资助

通讯作者: 金光熙     E-mail: jgx1964@sina.com
Corresponding author: JIN Guangxi     E-mail: jgx1964@sina.com
作者简介: 金光熙,男,1964年生,博士,教授,研究方向为高温合金腐蚀与防护

引用本文:

金光熙, 潘凤红,郎成,乔利杰. SOFC连接体用STS444/Y合金的高温导电性能研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 367-370.
JIN Guang-Xi. ELEVATED TEMPERATURE ELECTRICAL CONDUCTIVITY OF STS444/Y ALLOY USED FOR SOFC INTERCONNECTS. J Chin Soc Corr Pro, 2011, 31(5): 367-370.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I5/367

[1] Fergus J W. Metallic interconnects for solid oxide fuel cells [J]. Mater. Sci. Eng., 2005,A397: 271-283

[2] Fu C J, Sun K N, Zhang N Q, et al. Effects of protective coating prepared by atmospheric plasma spraying on planar SOFC interconnect [J].Rare Met. Mater. Eng., 2006, 35(7): 1117-1120

    (付长璟, 孙克宁, 张乃庆等. 空气等离子喷涂板式SOFC连接体保护涂层的性能[J]. 稀有金属材料与工程, 2006, 35(7): 1117-1120)

[3] Toji A, Uehara T, Ohno T. The Effects of alloying elements on properties of ferritic Fe-Cr alloys for SOFC interconnects [A]. Q1-Ninth International Symposium on Solid Oxide Fuel Cells (SOFC IX) [C]. Quebec City, Canada: The Electrochemical Society, Inc, 2005, 1789-1797

[4] Hojda R, Heimann W, Quadakkers W J. Production-capable materials concept for high-temperature fuel cells [J]. Thyssen Krupp Technol. Forum, 2003, (4-5): 20-23

[5] Lang E. The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys [M]. London and New York: Elsevier Applied Science, 1989. 111

[6] Cabouro G, Caboche G, Chevalier S, et al.Opportunity of metallic interconnects for ITSOFC: Reactivity and electrical property [J]. J. Power Sources, 2006, 156(1): 39-44

[7] Qu W, Li J, Douglas G I, et al. Yttrium, cobalt and yttrium/cobalt oxide coatings on ferritic stainless steels for SOFC interconnects [J]. J.Power Sources, 2006, 157(1): 335-350

[8] Chen X, Hou P Y, Craig P, et al. Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties [J]. Solid State Ionics, 2005, 176(5-6): 425-433

[9] Geng S J, Zhu J H,Lu Z G. Evaluation of several alloys for solid oxide fuel cell interconnect application [J]. Scr. Mater,2006, 55(3): 239-242

[10] Sakai N, Horita T, Xiong Y P, et al. Structure and transport property of manganese-chromium-iron oxide as a main compound in oxide scales of alloy interconnects for SOFCs [J]. Solid State Ionics, 2005,176(7-8): 681-686
[1] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[2] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[4] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[5] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[6] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[7] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[8] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[9] 赵展,李景阳,董建新,姚志浩,张麦仓. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[10] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[11] 谢冬柏,单国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[12] 杨甜甜,徐敬军,钱余海,李美栓. 石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[13] 黄嘉鹏,杨斌,汪航. 稀土 (Y,La,Ce) 复合添加对Ni-10Cr-5Al合金在1000 ℃下高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[14] 袁军涛, 王文, 朱圣龙, 王福会. Super 304H钢在700~900 ℃纯水蒸汽中的氧化行为[J]. 中国腐蚀与防护学报, 2014, 34(3): 218-224.
[15] 袁军涛, 吴细毛, 王文, 朱圣龙, 王福会. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264.