Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (2): 135-138    
  研究报告 本期目录 | 过刊浏览 |
正应力对7150铝合金剥蚀行为的影响
黄昌龙1,2,万小朋1,赵美英1,徐海蓉2
1. 西北工业大学航空学院 西安 710072
2. 广州民航职业技术学院 广州 510403
EFFECTS OF AXIAL STRESS ON EXFOLIATION CORROSION OF 7150 ALLOY
HUANG Changlong1,2, WAN Xiaopeng1, ZHAO Meiying1, XU Hairong2
1. Aeronautics School, Northwestern Polytechnic University. Xi'an 710072
2. Guangzhou Civil Aviation College. Guangzhou 510403
全文: PDF(1586 KB)  
摘要: 针对老龄飞机7150铝合金结构普遍存在的剥蚀问题,在海洋性盐雾环境下,通过T73时效态不受载和悬臂梁加载剥蚀试验,以及T77时效态波音737CL龙骨梁下缘条不受载和受载剥蚀试验,研究了正应力对 7150铝合金剥蚀的影响。结果表明:T73时效态剥蚀,L轴向拉应力作用表面最轻,其次为不受载表面,L轴向压应力作用表面最严重。T77时效态龙骨梁下缘条剥蚀,在L轴向压应力作用下的产生和扩展速度,比不受载状态下快得多。由此认为:L轴向压应力可以加速7150铝合金剥蚀的形成和扩展,而L轴向拉应力可以抑制剥蚀的形成和扩展。
关键词 剥蚀拉应力抑制压应力加速    
Abstract:The effects of axial stress on exfoliation corrosion (EFC) of T73 tempered and T77 tempered 7150 alloy were investigated based on EFC test with loading and without loading respectively in oceanic environment. It was found that EFC on T73 tempered specimen without stress was severer than that with tension stress of L axis, but milder than that with compression stress of L axis. The development of EFC on T77 tempered specimen with compression stress of L axis was much quicker than that without stress. It could be concluded that compression stress of L axis can accelerate EFC and tension stress of L axis can reduce EFC.
Key wordsexfoliation corrosion(EFC)    tension stress    inhibition, compression stress    acceleratation
收稿日期: 2010-06-30     
ZTFLH: 

TG 174.3

 
基金资助:

海南航空股份有限公司技术攻关项目(2006-2009)和中国民航局科技项目资助

通讯作者: 黄昌龙     E-mail: richardhcl@vip.sina.com
Corresponding author: HUANG Changlong      E-mail: richardhcl@vip.sina.com
作者简介: 黄昌龙,男,1969年生,高级工程师,研究方向为飞机结构维修理论与技术

引用本文:

黄昌龙,万小朋,赵美英,徐海蓉. 正应力对7150铝合金剥蚀行为的影响[J]. 中国腐蚀与防护学报, 2011, 31(2): 135-138.
HUANG Chang-Long, WAN Xiao-Peng, DIAO Mei-Yang, XU Hai-Rong. EFFECTS OF AXIAL STRESS ON EXFOLIATION CORROSION OF 7150 ALLOY. J Chin Soc Corr Pro, 2011, 31(2): 135-138.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I2/135

[1] Kelly D J,Robinson M J. Influence of heat treatment and grain shape on exfoliation corrosion of Al-Li alloy 8090 [J].Corrosion, 1993, 49(10): 787-795

[2] Dai X Y, Xia C Q, Sun Z Q, et al. Microstructure and properties of Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr alloy [J]. Chin. J. Nonferrous Met., 2007, 17(3): 396-402

    (戴晓元, 夏长清, 孙振起等. Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr合金的组织和性能 [J]. 中国有色金属学报. 2007, 17(3): 396-402)

[3] Robinson M J, Jackson N C. The influence of grain structure and intergranular corrosion rate on exfoliation and stress corrosion cracking of high strength Al--Cu--Mg alloys [J]. Corros. Sci.,1999, 41(5): 1013-1028

[4] Zhang X M, Zhang X Y, Liu S D, et al. Effect of pre-precipitation after solution on mechanical properties and corrosion resistance of aluminum alloy 7A55 [J]. J. Cent. South Univ., 2007, 38(5): 789-794

    (张新明, 张小艳, 刘胜胆等. 固溶后降温预析出对7A55铝合金力学及腐蚀性能的影响 [J]. 中南大学学报, 2007, 38(5): 789-794)

[5] Robinson M J. The role of wedging stresses in the exfoliation corrosion of high strength aluminum alloy [J].Corros. Sci., 1983, 23(8): 887-899

[6] McNaughtan D, Worsfold M, Robinson M J. Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminum alloys [J].Corros. Sci., 2003, 45(10): 2377-2389

[7] Robinson M J. Mathematical modeling of exfoliation corrosion in high strength aluminum alloys [J]. Corros. Sci.,1982, 22(8): 775-790

[8] Li J F, Zhang Z, Zheng Z Q, et al, Influence of tensile stress on exfoliation corrosion and electrochemical impedance spectroscopy of 7075 alloy [J]. Corros. Sci. Prot. Technol.,2005, 17(2): 79-82

    (李劲风, 张昭, 郑子樵等. 拉应力对7075铝合金的剥蚀及其电化学阻抗谱的影响 [J]. 腐蚀科学与防护技术. 2005, 17(2): 79-82)

[9] Boeing Industry. BAC5602 heat treatment of aluminum alloys [S].

[10] Boeing Industry. BMS7-257 aluminum alloy extrusion 7150 [S].

[12] Boeing Industry. BSS7219 test method of intergranular attack [S].

[13] Boeing Industry. BAC5786 etch cleaning of aluminum alloys [S].

[14] Shan Z H. Mechanics of Materials [M]. Beijing: Higher Education Press, 1999: 48-50

[15] Qin Q, Wang R Z. The static relax of residual stress and the optimal residual stress field of shot peen [J].Met. Sci. Technol., 1988. 7(1): 1-7

     (邱琼, 王仁智. 关于残余应力的静载松弛与最佳喷丸残余应力场的研究 [J]. 金属科学与工艺, 1988, 7(1): 1-7)

[16] 3M Industry. 61-5001-0752-1 Flap Peen TC 330 [S].
[1] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[2] 冯亚丽,白子恒,陈利红,魏丹,张东玖,姚琼,吴俊升,董超芳,肖葵. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 519-526.
[3] 朱亦晨,刘光明,刘欣,裴锋,田旭,师超. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[4] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[5] 叶赛, MasoumehMoradi, 宋振纶, 胡方勤, 孙朝晖, 龙剑平. 杀鱼假交替单胞菌对模拟海水流动环境下Q235碳钢腐蚀的抑制行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[6] 崔晓飞, 谭晓明, 王德, 钱昂. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[7] 毛成亮,肖葵,董超芳,吴俊升,颜利丹,蒋立. 超深冲压用冷轧板在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 101-109.
[8] 左翔,蒋裕丰,迟挺,胡鑫,曹冬梅,蔡烽. 新型含长链烷基苯并三唑缓蚀剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
[9] 聂亚楠,沈浩,谷坤鹏,王成启. 玻璃钢复合材料耐海水腐蚀性能及抗Cl-渗透寿命预测[J]. 中国腐蚀与防护学报, 2016, 36(4): 357-362.
[10] 钟西舟, 王振尧, 刘艳洁, 王彬彬, 白芳, 窦志宏. 镀锌钢在模拟海洋大气环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(2): 151-155.
[11] 王振尧, 于全成, 陈军君, 王军, 徐松, 胡波涛. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(1): 53-58.
[12] 杜向前, 段继周, 翟晓凡, 栾鑫, 张杰, 侯保荣. 铁还原细菌Shewanella algae生物膜对316L不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[13] 陈斌锴 陈庆舍 仲海峰 郝晓东 江社明 张启富. 440 MPa高强IF钢镀锌层中抑制层的组织结构及生长机理[J]. 中国腐蚀与防护学报, 2013, 33(3): 188-192.
[14] 骆 鸿 李晓刚 董超芳 肖 葵. 304不锈钢在热带海洋大气下暴露实验
和加速腐蚀实验研究
[J]. 中国腐蚀与防护学报, 2013, 33(3): 193-198.
[15] 苏景新 白 云 关庆丰 邹 阳. 飞机蒙皮结构表面涂层失效的电化学阻抗分析[J]. 中国腐蚀与防护学报, 2013, 33(3): 251-256.