Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (2): 130-134    
  研究报告 本期目录 | 过刊浏览 |
电化学阻抗谱法对304不锈钢孔蚀生长和再钝化阶段的原位研究
张胜寒,檀玉,梁可心
华北电力大学环境科学与工程学院 保定 071003
IN-SITU  IMPEDANCE INVESTIGATION OF 304 STAINLESS STEEL BETWEEN PIT GROWTH AND REPASSIVATION STATE
ZHANG Shenghan, TAN Yu, LIANG Kexin
School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003
全文: PDF(696 KB)  
摘要: 利用动电位电化学阻抗谱(DEIS)法研究了304不锈钢在0.1 mol/L NaCl 溶液中的孔蚀行为,比较了孔蚀前后钝化膜的电化学阻抗谱的变化。提出了一种改进的双层膜结构,用以评价不锈钢在孔蚀的初始阶段和再钝化阶段各个参数的不同,指出孔蚀对钝化膜外层破坏较内层严重。使用活化控制的膜破裂模式评价孔蚀的初始阶段和再钝化阶段各个参数变化。
关键词 不锈钢动电位电化学阻抗谱孔蚀钝化膜    
Abstract:Pitting corrosion investigations of 304 stainless steel in 0.1 mol/L sodium chloride borate buffer solution have been investigated by dynamic electrochemical impedance spectroscopy (DEIS). The electric equivalent circuit of the classic double-layer structure has been proposed to evaluate the changes of EIS data. According to the fitting results, the outer-layer of passive film of 304 stainless steel is highly destroyed during pitting process and can not return to the original condition. However, during repassivation process the inner-layer can be repassivated entirely. An active controlled model of film breakdown was proposed to analysis the film between the pit initiation and repassivation states.
Key wordsstainless steel    DEIS    pitting corrosion    passive films
收稿日期: 2010-09-07     
ZTFLH: 

TG174.36

 
基金资助:

国家自然科学基金项目(50971059)资助

通讯作者: 檀玉     E-mail: lucifertan@163.com
Corresponding author: TAN Yu      E-mail: lucifertan@163.com
作者简介: 张胜寒,男,1962年生,教授,博士,研究方向为金属腐蚀与防护

引用本文:

张胜寒,檀玉,梁可心. 电化学阻抗谱法对304不锈钢孔蚀生长和再钝化阶段的原位研究[J]. 中国腐蚀与防护学报, 2011, 31(2): 130-134.
ZHANG Qing-Han, TAN Yu, LIANG Ke-Xin. IN-SITU  IMPEDANCE INVESTIGATION OF 304 STAINLESS STEEL BETWEEN PIT GROWTH AND REPASSIVATION STATE. J Chin Soc Corr Pro, 2011, 31(2): 130-134.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I2/130

[1] Buchler M, Schmuki P, Bohni H, et al. Comparison of the semiconductive properties of sputter-deposited iron oxides with the passive film on iron [J]. J. Electrochem. Soc, 1998, 145: 378-385

[2] Oltra R, Keddam M. Application of EIS to localized corrosion [J].Electrochim. Acta, 1990, 35: 1619-1629

[3] Oltra R, Keddam M. Application of impedance technique to localized corrosion [J]. Corros. Sci., 1988, 28: 1-5; 7-18

[4] Mansfeld F, Lin S, Kim S, et al. Pitting and passivation of Al alloys and Al-based metal matrix composites [J]. J.Electrochem. Soc., 1990, 137: 78-82

[5] Mansfeld F, Kendig M W. Evaluation of anodized aluminum surfaces with electrochemical impedance spectroscopy [J]. J. Electrochem. Soc., 1988, 135: 828-833

[6] Mansfeld F, Shih H. Detection of pitting with electrochemical impedance spectroscopy [J]. J. Electrochem.Soc., 1988, 135: 1171-1172

[7] Park J J, Pyun S. Pit formation and growth of alloy 600 in Cl- ion-containing thiosulphate solution at temperatures 298-573 K using fractal geometry [J]. Corros. Sci., 2003, 45: 995-1010

[8] Pistorius P C, Burstein G T.Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate [J]. Corros. Sci., 1992, 33: 1885-1887

[9] Williams D E, Stewart J, Balkwill P H. The nucleation, growth and stability of micropits in stainless steel [J].Corros. Sci., 1994. 36: l2l3-1235

[10] Pride S T, Scully J R, Hudson J L. Metastable pitting of aluminum and criteria for the transition to stable pit growth [J]. J. Electrochem. Soc., 1994, 41: 3028

[11] Laycock N J, Newman R C. Localised dissolution kinetics, salt films and pitting potentials [J]. Corros.Sci., 1997. 39: 1771-1790

[12] Liu Z J, Cheng X Q, Liu X H, et al. Calculation and analysis of diffusivity of point defects in passive film formed on 2205 duplex stainless steel and 316L austenitic stainless steel [J]. J. Chin. Soc.Corros. Prot., 2010, 30(4): 273-277

     (刘佐嘉, 程学群, 刘小辉等, 2205双相不锈钢与316L奥氏体不锈钢钝化膜内点缺陷扩散系数的计算分析 [J]. 中国腐蚀与防护学报,2010, 30(4): 273-277)

[13] Krakowiak S, Darowicki K, Sepski P. Impedance investigation of passive 304 stainless steel in the pit pre-initiation state [J]. Electrochim. Acta,2005, 50: 2699-2704

[14] Darowicki K, Krakowiak S, Sepski P. Evaluation of pitting corrosion by means of dynamic electrochemical impedance spectroscopy [J]. Eletrochim. Acta, 2004, 49: 2909-2918

[15] Hitzig J, Juttner K, Lorenz W J, et al. AC-impedance measurements on porous aluminium oxide films [J]. Corros.Sci., 1984, 24: 945-952

[16] Cabot P L, Garrido J A, Perez E, et al. EIS study of heat-treated Al-Zn-Mg alloys in the passive and transpassive potential regions [J]. Electrochim. Acta, 1995, 40: 447-454

[17] Chen L, Myung N, Sumodjo P T A, et al. A comparative electrodissolution and localized corrosion study of 2024Al in halide media [J]. Electrochim. Acta, 1999, 44: 2751-2764

[18] Gu B S, Liu J H, A research on pH during the procession of the Cerium(III) film formation of aluminum alloys by EIS [J]. J. Chin. Soc. Corros. Prot.,2010, 30(2): 124-128

     (顾宝珊, 刘建华, 电化学阻抗谱研究pH值对铝合金表面铈盐转化膜形成过程的影响 [J]. 中国腐蚀与防护学报, 2010,30(2): 124-128)

[19] Hong T, Walter G W, Nagumo M. The observation of the early stages of pitting on passivated type 304 stainless steel in a 0.5 M NaCl solution at low potentials in the passive region by using the AC impedance method [J].Corros. Sci., 1996, 38: 1525-1533

[20] Hong T, Nagumo M. The effect of chloride concentration on early stages of pitting for type 304 stainless steel revealed by the AC impedance method [J]. Corros. Sci.,1997, 39: 285-293

[21] Bastidas J M, Polo J L, Torres C L, et al. A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function [J]. Corros.Sci., 2001, 43: 269-281

[22] Wenger F, Cheriet S, Talhi B, et al. Electrochemical impedance of pits influence of the pit morphology [J].Corros. Sci., 1997, 39: 1239-1252

[23] Li N, Li Y, Wang S G, et al, Corrosion behavior of nanocrystallized bulk 304 stainless steel-the research on anti-chloride ion attack of the passive film [J]. J. Chin. Soc. Corros. Prot., 2007, 27(2): 80-83

     (李楠, 李瑛, 王胜刚等, 轧制纳米块体304不锈钢腐蚀行为的研究-钝化膜耐氯离子侵蚀能力 [J], 中国腐蚀与防护学报, 2007, 27(2): 80-83)

[24] Bastidas J M, Lopez M F, Gutierrez A, et al. Chemical analysis of passive films on type AISI 304 stainless steel using soft X-ray absorption spectroscopy [J]. Corros. Sci., 1998, 40: 43-438

[25] CarmezimaM J, Simoesb A M, Montemorb M F, et al. Capacitance behavior of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci. 2005, 47: 581-591

[26] Perez F J, Gutierrezb A A, Lopezc M F, et al. Surface modification of ion-implanted AISI 304 stainless steel after oxidation process: X-ray absorption spectroscopy analysis [J]. Thin Solid Films.,2002, 415: 258-265

[27] Hitzig J, Juttner K, Lorenz W J, et al. AC-impedance measurements on corroded porous aluminum oxide films [J].J. Electrochem. Soc., 1986, 133: 887-892

[28] Juttner K, Lorenz W J, Paatsh W, et al. The role of surface inhomogeneities in corrosion processes-electrochemical impedance spectroscopy (EIS) on different aluminum oxide films [J]. Corros. Sci., 1989, 29: 279-288

[29] Chao C Y, Lin L F, MacDonald D D, et al. A point defect model for anodic passive films [J]. J. Electrochem. Soc.,1981, 128: 1187-1194

[30] Park J R, MacDonald D D. Impedance studies of the growth of porous magnetite films on carbon steel in high temperature aqueous systems [J]. Corros. Sci., 1983, 23: 295-315

[31] Isaacs H S. The behavior of resistive layers in the localized corrosion of stainless steel [J]. J.Electrochem. Soc., 1977, 120: 1456-1462

[32] Mankowski J, Szklarska-Smialowska Z. The effect of specimen position on the shape of corrosion pits in an austenitic stainless steel [J]. Corros. Sci., 1977, 17: 725-735\par
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[5] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[6] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[7] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[8] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[10] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[12] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[13] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[14] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[15] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.