Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (6): 459-464    
  研究报告 本期目录 | 过刊浏览 |
混凝土结构中钢筋腐蚀电位与腐蚀电流在液面附近的分布
冯兴国;唐聿明;赵旭辉;左禹
北京化工大学材料科学与工程学院 北京 100029
DISTRIBUTION OF CORROSION POTENTIAL AND CORROSION CURRENT OF REBARS IN CONCRETE STRUCTURE NEARBY LIQUID LEVEL
FENG Xingguo;TANG Yuming; ZHAO Xuhui; ZUO Yu
College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100019
全文: PDF(764 KB)  
摘要: 

将含钢筋的混凝土试样部分浸泡在3.5% NaCl溶液中,测量溶液以及溶液上方混凝土中钢筋试样的腐蚀电位、宏电池腐蚀电流,通过极化电阻Rp值计算钢筋的腐蚀电流密度。结果表明位于溶液中混凝土内钢筋试样的腐蚀电流密度随着其在溶液中深度的增加而降低。位于溶液上方混凝土中钢筋试样的腐蚀电流密度随着其所处的位置升高而降低,说明溶液中混凝土中钢筋的腐蚀与氧含量密切相关。溶液上方的混凝土中钢筋的腐蚀与混凝土湿度密切相关。

关键词 混凝土钢筋腐蚀宏电池腐蚀电位腐蚀电流    
Abstract

Part of the reinforced concrete sample was put into 3.5% NaCl solution, a titanium bar was deposited in concrete as reference electrode. the potential and current between reinforcing bars (rebars) and titanium was tested separately, the microcell current of samples was calculated by polarization resistence Rp. The results showed that the current of rebars placed in solution decreases with increase of depth, the current of rebars placed above solution reduces with  the height of sample position. This indicates that  in solution the rebar corrosion has a close relationship with the concentration of oxygen, the rebar corrosion has a close relationship with the humidity of the concrete above the solution.

Key wordsconcrete    corrosion of rebars    macrocell    corrosionpotential    corrosion current
收稿日期: 2008-10-29     
ZTFLH: 

TU375.1

 
基金资助:

国家自然科学基金项目(50731004)资助

通讯作者: 左禹     E-mail: zuoy@mail.buct.edu.cn
Corresponding author: ZUO Yu     E-mail: zuoy@mail.buct.edu.cn
作者简介: 冯兴国,男,1983年生,博士生,研究方向为钢筋混凝土结构的腐蚀

引用本文:

冯兴国 唐聿明 赵旭辉 左禹. 混凝土结构中钢筋腐蚀电位与腐蚀电流在液面附近的分布[J]. 中国腐蚀与防护学报, 2009, 29(6): 459-464.
FENG Xin-Guo. DISTRIBUTION OF CORROSION POTENTIAL AND CORROSION CURRENT OF REBARS IN CONCRETE STRUCTURE NEARBY LIQUID LEVEL. J Chin Soc Corr Pro, 2009, 29(6): 459-464.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I6/459

[1] Cai C G. Experiment study on relation of concrete's carbonized layer and stress eroding [J]. Eng. Manage. Advis., 2007, 127(3): 68-69
     (蔡传国. 混凝土表面碳化与应力腐蚀关系的实验研究 [J]. 中国市政工程,2007, 127(3): 68-69)
[2] Kosaki A, Evaluation method of corrosion lifetime of conventional stainless steel canister under oceanic air environment [J]. Nucl. Eng. Design, 2008, 238(5): 1233-1240
[3] Hansson C M, Macrocell and microcell corrosion of steel in ordinaryPortland cement and high performance concretes [J]. Cement Concr.Res., 2006, 36(11): 2098-2102
[4] Raupach M, Chloride-induced macrocell corrosion of steel in concrete-theoretical background and practical consequences [J]. Constr. Building Mater., 1996, 10(5):329-338
[5] Raupach M., P. Schieβl, Macrocell sensor systems for monitoring of the corrosion risk of the reinforcement in concrete structures [J]. NDT&E Int., 2001, 34(6): 435-442
[6] Elsener B, Macrocell corrosion of steel in concrete-implications for corrosion monitoring [J]. Cement Concr. Compos., 2002, 24(1):65-72
[7] Andrade C M, Feliu I R, Gonzalez S, et al, The effect of macrocells between active and passive areas of steel reinforcements [J]. Corros. Sci., 1992, 33(2): 237-249
[8] Trejo D, Monteiro P J. Corrosion performance of conventional and low-alloy reinforcing bars embedded in concrete and exposed to chloride environments [J]. Cement Concr. Res., 2005, 35(3): 562-571
[9] Sagues A A, Pech-Canul M A, Shahid Al-Mansur A K M. Corrosion macrocell behavior of reinforcing steel in partially submerged concrete columns [J]. Corros. Sci., 2003, 45(1): 732
[10] Muralidharan S, Vedalakshmi R, Saraswathi V, et al,Studies on the aspects of chloride ion determination in different types of concrete under macro-cell corrosion conditions [J]. Building  Env.2005, 40(9): 1275-1281
[11] Vedalakshmi R, Kumar K, Effect of prior damage on the performance of cement based coatings on rebar:macrocell corrosion studies [J]. Cement Concr. Compos., 2000, 22(6): 417-421
[12] Reou J S, Ann K Y., Electrochemical assessment on the corrosion risk of steel embedment in OPC concrete depending on the corrosion detection techniques [J]. Mater. Chem. Phys., 2009,113(1): 78-84

[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[3] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[4] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[5] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[6] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] 陈云翔, 冯丽娟, 蔡建宾, 王璇, 洪毅成, 林德源, 庄建煌, 杨怀玉. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[8] 田雪凯, 王海龙, 程旭东, 孙晓燕. 混凝土裂缝形态参数对Cl-传输性能影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
[9] 苗伟行,胡文彬,高志明,孔宪刚,赵茹,唐军务. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[10] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[11] 毛江鸿,金伟良,张华,许晨,夏晋. 海砂混凝土建筑的耐久性提升技术及应用研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 563-570.
[12] 冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[13] 汤雪颖,卢国华,朱志平,柳森,毛大厦. 炉前材料20G在高温水溶液中的电化学行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 365-371.
[14] 冯兴国,卢向雨,左禹,陈达. 应变对混凝土孔隙液中不锈钢钝化性能影响的电化学研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 372-378.
[15] 程旭东, 孙连方, 曹志烽, 朱兴吉, 赵立新. 沿海钢筋混凝土结构Cl-侵蚀数值模拟方法研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.