Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (6): 431-436    
  研究报告 本期目录 | 过刊浏览 |
高能微弧合金化制备Fe3Al微晶涂层及其高温氧化性能
郭平义;邵勇;李垒
江苏科技大学先进焊接技术江苏省重点实验室 镇江 212003
HIGH TEMPERATURE OXIDATION OF Fe3Al COATING PREPARED BY HIGH ENERGY MICRO-ARC ALLOYING PROCESS
GUO Pingyi; SHAO Yong; LI Lei
Jiangsu Provincial Key Laboratory of Advanced Welding Technology; Jiangsu University of Science and Technology; Jiangsu 212003
全文: PDF(2443 KB)  
摘要: 

通过控制输出功率、沉积时间、频率等工艺参数,采用高能微弧合金化技术制备出与基体形成冶金结合的 Fe3Al涂层。研究了涂层的显微组织和高温氧化性能。结果表明Fe3Al涂层在900 ℃和1000 ℃空气中氧化时,虽然氧化增重都比电极材料大,但是晶粒细化后的涂层,显著提高氧化膜与基体间的粘附性,氧化膜的剥落得到明显抑制,尤其是在1000 ℃时更为明显。

关键词 高能微弧合金化技术Fe3Al涂层高温氧化    
Abstract

High energy micro-arc alloying process was successfully used to prepare compact microcrystalline Fe3Al coating with a metallurgical bonding between the coating and the substrate alloy, when keeping all the parameters such as power, frequency, and time proper. Moreover, the preparation process is accompanied with a minimal thermal distortion or microstructural changes of the substrate. Air oxidation experiments at 900 ℃\linebreak and 1000 ℃ indicated that the Fe3Al coating exhibited better oxidation resistance than the cast Fe3Al, forming continuous and compact Al-rich scales with good adhesion. This may be due to the fact that the microcrystallization of Fe3Al enhances short-circuit diffusion paths and reduces the critical Al content for the formation of a continuous Al2O3 scale.

Key wordsHigh energy micro-arc alloying process    Fe3Al coating    High Temperature oxidation
收稿日期: 2008-09-10     
ZTFLH: 

TG174.4

 
通讯作者: 郭平义     E-mail: pingyguo@gmail.com
Corresponding author: GUO Pingyi     E-mail: pingyguo@gmail.com
作者简介: 郭平义, 女,1979年生,博士,讲师,研究方向为金属腐蚀与防护

引用本文:

郭平义 邵勇 李垒. 高能微弧合金化制备Fe3Al微晶涂层及其高温氧化性能[J]. 中国腐蚀与防护学报, 2009, 29(6): 431-436.
GUO Beng-Xi. HIGH TEMPERATURE OXIDATION OF Fe3Al COATING PREPARED BY HIGH ENERGY MICRO-ARC ALLOYING PROCESS. J Chin Soc Corr Pro, 2009, 29(6): 431-436.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I6/431

[1] Pedraza F, Grosseau-Poussard J L, Dinhut J F. Evolution of oxide scales on an ODS Fe-Al intermetallic alloy during high temperature exposure in air [J]. Intermetallics, 2005, 13: 27-33
[2] Godlewska E, Szczepanik S, Mania R, et al. Fe-Al materials from intermetallic powders [J]. Intermetallics, 2003, 11: 307-312
[3] Szczucka-Lasota B, Formanek B, Hernas A. Growth of corrosion products on thermally sprayed coatings with Fe-Al intermetallic phases in aggressive environments [J]. J. Mater. Proc. Technol., 2005,164-165: 930-934
[4] Montealegre M A, Gonzalez-Carrasco J L, Morris-Munoz M A, et al. The high temperature oxidation behavior of ODS Fe-Al alloy [J]. Intermetallics, 2008: 439-446
[5] Niu Y, Hou Y.Characterization of pore development at\linebreak Al2O3/Fe-Al interface during high temperature oxidation [J]. Acta Metall. Sin., 2003,39(10): 1065-1070
    (牛焱,侯嫣,高温氧化时Al2O3/Fe-Al界面孔洞形成过程的分析[J],金属学报,2003,39(10):1065-1070)
[6] Levashov E A, Vakaev P V, Zamulaeva E I, et al. Nanoparticle dispersion-strengthened coatings and electrode materials for electrospark deposition [J].Thin Solid Films, 2006, 515, 1161-1165
[7] Frangini S, Masci A.Intermetallic Fe-Al based coatings deposited by the electrospark technique: corrosion behavior in molten (Li+K) carbonate [J].Surf. Coat. Technol., 2004, 184: 31-39
[8] Zheng W L, Gao W, Michiko Yoshihara, et al. Improving oxidation resistance of Ti3Al and TiAl intermetallic compounds with electro-spark deposit coatings [J]. Mater. Sci. Eng., 2003, A347: 243-252
[9] Zhang Z G, Niu Y. Effect of Chromium on the oxidation of a Fe-10Al alloy at 1000 ℃ [J]. Mater. Sci. Forum, 2005,475-479: 685-688
[10] Boggs W E. The oxidation of iron-aluminum alloys from 450 ℃ to 900 ℃ [J]. J. Electrochem. Soc., 1971,118(6): 906-913
[11] Saegusa F, Lee L. Oxidation of iron-aluminum alloys in the ranges 500-1000 ℃ [J]. Corrosion, 1966, 22: 168-177
[12] Lou H Y, Wang F H, Xia B J, et al. High temperature oxidation resistance of sputtered micro-grain superalloy K38G [J]. Oxid.Met., 1992, 38(3/4): 299-307
[13]  Gesmundo F, Niu Y, Viani F. The transition from the formation of mixed scales to the selective oxidation of the most reactive component in the corrosion of single and two-phase binary alloys [J]. Oxid. Met., 1993, 40: 373-393

[1] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[2] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[4] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[5] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[6] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[7] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[8] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[9] 赵展,李景阳,董建新,姚志浩,张麦仓. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[10] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[11] 谢冬柏,单国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[12] 杨甜甜,徐敬军,钱余海,李美栓. 石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[13] 黄嘉鹏,杨斌,汪航. 稀土 (Y,La,Ce) 复合添加对Ni-10Cr-5Al合金在1000 ℃下高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[14] 袁军涛, 王文, 朱圣龙, 王福会. Super 304H钢在700~900 ℃纯水蒸汽中的氧化行为[J]. 中国腐蚀与防护学报, 2014, 34(3): 218-224.
[15] 袁军涛, 吴细毛, 王文, 朱圣龙, 王福会. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264.