Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (6): 426-430    
  研究报告 本期目录 | 过刊浏览 |
污染离子对Q235钢潮湿时间的多因素关联性分析
唐子龙1;2;李超1;曲文超1;宋鑫1
1. 天津大学材料科学与工程学院 天津 300072
2. 天津大学天津市材料复合与功能化重点实验室  天津 300072
CORRELATION BETWEEN CONTROL FACTORS AND TIME OF WETNESS OF Q235 STEEL UNDER Cl-, SO42-  AND CO32- CONTAMINATED LIQUID LAYER
TANG Zilong1;2; LI Chao1; QU Wenchao1; SONG Xin1
1.School of Materials Science and Engineering; Tianjin University; Tianjin 300072
2.Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072
全文: PDF(446 KB)  
摘要: 

研究了Q235钢在1 mmol/L NaCl,10 mmol/L NaSO4和NaCO3薄液膜下潮湿时间随温度、相对湿度和浸润时间的变化规律。采用数据挖掘中标准化技术对自变量和因变量进行预处理,提高了分析精度。通过线性模型中各自变量的权重系数研究环境控制因素对潮湿时间的影响规律和贡献份数,分析污染离子和腐蚀产物对潮湿时间的作用方式。结果表明:数据标准化技术可有效提高分析精度。 Cl-、SO42-和CO$_32-三种污染离子对于材料表面潮湿时间有不同的影响模式。温度和湿度对潮湿时间的影响较大,浸润时间对潮湿时间的影响较小。浸润时间和湿度跟潮湿时间呈正相关,而温度跟潮湿时间呈负相关。在24 ℃和相对湿度为70%~80%左右(转化点)温度和相对湿度指数有显著变化。温度和相对湿度对潮湿时间的影响有明显负协同作用,强弱和模式依赖于污染离子种类和理化性质,与腐蚀产物也有密切关系。

关键词 大气腐蚀薄液膜潮湿时间数据挖掘模式分析    
Abstract

Time of wetness (TOW) of Q235 steel covered by thin liquid layer of 1 mmol/L NaCl,10 mmol/L Na2SO4 and Na2CO3 is measured by taking consideration of three control factors, i.e. temperature (Temp), relative humility (RH) and time of immersion (TOI), as well as corrosion deposits. The standardization procedure from data mining is adopted and applied to all parameters before a linear model is introduced to correlate the TOW and its control factors. Effect and pattern of the control factors as well as corrosion deposits on TOW is studied. The result shows that the pattern of temperature and RH on TOW is greatly changed due to the involvement of Cl-, SO42- and CO32-  ions compared with that without these contaminants. Depending on the chemical/physical properties of the contaminants and the composition and distribution of corrosion deposits, the contribution of temperature and RH terms to TOW could be reversed or enhanced or weakened. Specifically, the TOW behavior can be clustered into two sections with the threshold values of 24 ℃ and RH 70%~80% which is determined approximately and conclusively. In each section, the contribution of temperature and RH to TOW is changed at different levels. At the end, the synergic effect of temperature and relative humidity on TOW is found and discussed in detail including the cause of this effect and possible dependence on the contaminating ions and corrosion deposits.

Key wordsatmospheric corrosion    thin liquid layer    time of wetness    data mining    pattern recognition
收稿日期: 2008-10-29     
ZTFLH: 

TG174.1

 
基金资助:

国家自然科学基金项目(50671072)和科技部专项课题(2005DKA10400-Z4)资助

通讯作者: 唐子龙     E-mail: zlt633@gmail.com
Corresponding author: TANG Zilong     E-mail: zlt633@gmail.com
作者简介: 唐子龙,男,1968年生,副教授,研究方向腐蚀电化学,表面修饰

引用本文:

唐子龙 李超 曲文超 宋鑫. 污染离子对Q235钢潮湿时间的多因素关联性分析[J]. 中国腐蚀与防护学报, 2009, 29(6): 426-430.
TANG Zi-Long, LI Tiao, QU Wen-Tiao, SONG Xin. CORRELATION BETWEEN CONTROL FACTORS AND TIME OF WETNESS OF Q235 STEEL UNDER Cl-, SO42-  AND CO32- CONTAMINATED LIQUID LAYER. J Chin Soc Corr Pro, 2009, 29(6): 426-430.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I6/426

[1] Veieva L, Maldonado L. Classification of atmospheric corrosivity in humid tropical climates [J],British Corros. J., 1998, 33:53-57
[2] Ramanauskas R, Quintana P, Bartolo-Perez P, et al. Effect of corrosion products on the atmospheric corrosion of electrodeposited zinc and zinc alloy coatings [J]. Corrosion. 2000, 56: 588-597
[3] Lobnig R, Sinclair J D, Unger M, et al. Mechanism of atmospheric corrosion of copper in the presence of ammonium sulfate particles-effect of surface particle concentration [J]. J. Electrochem. Soc.,2003, 150 A: 835-849
[4] Rodriguez J J S, Hernandez F J S, Gonzalez J E G. The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, zinc and aluminum in a limited geographic zone with different types of environment [J].Corros. Sci., 2003, 45(4): 799-815
[5] Mendoza A, Corvo F. Outdoor and indoor atmospheric corrosion of non-ferrous metals [J], Corros Sci., 2000, 42(7): 1123-1147
[6] Tang Q H. The study of TOW distribution in room temperature of Jiangjin site [J]. Environ.Technol., 2003,4 (7): 7-9
    (唐其环. 江津润湿时间的温度分布研究 [J]. 环境技术. 2003,4(7):7-9)
[7] Cole I S, Holgate R,  Kao P, et al. The rate of drying of moisture from a metal surface and its implication for time of wetness [J], Corros.Sci., 1995, 37(3): 455-465
[8] Cole I S, Ganther W D, Sinclair J D.A study of the wetting of metal surfaces in order to understand the processes controlling atmospheric corrosion [J]. J. Electrochem.Soc., 2004, 151: B627-B635
[9] Cole I S, Paterson D A, Ganther W D. Holistic model for atmospheric corrosion Part 1-Theoretical framework for production, transportation and deposition of marine salts [J]. Corros. Eng. Sci. Technol.,2003,38: 129-134
[10] Corvo F, Minotas J, Delgado J. Changes in atmospheric corrosion rate caused by chloride ions depending on rain regime [J]. Corros, Sci.,2005, 47(4): 883-892
[11] Oesch S. The effect of SO2, NO2, NO and O3 on the corrosion of unalloyed carbon steel and weathering steel [J]. Corros. Sci., 1996, 38(8): 1357-1368
[12] Robert E M,Robert J. Early corrosion of mild steel in seawater [J]. Corros. Sci.2005, 47(7): 1678-1693
[13] Tang Z L, Song X, Zhang Y P,Control factors of time of wetness and irp corrosion rate of Q235 steel under pure water thin liquid film [J]. J. Chin. Soc. Corros.Prot., 2009, 29(3): 161-166
     (唐子龙,宋鑫,张义萍. 纯水薄液膜下Q235钢潮湿时间的影响因素和腐蚀速度的磁阻研究 [J]. 中国腐蚀与防护学报,2009, 29(3): 161-166)}

[1] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[5] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[6] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[7] 林修洲, 杨丽, 梅拥军, 郑兴文, 罗淑文, 崔学军. 飞机起落架镀镉4130钢在甲酸钾溶液薄液膜下腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 567-574.
[8] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[9] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[10] 张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[11] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[12] 赵苇杭, 王浩伟, 蔡光义, 董泽华. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[13] 孙霜青,郑弃非,李春玲,王秀民,胡松青. 腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[14] 白子恒,黄运华,李晓刚,杨浪,董超芳,颜利丹,肖葵. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[15] 李东亮,付贵勤,朱苗勇. 湿热工业海洋大气中Si对桥梁钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.