Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (6): 411-414    
  研究报告 本期目录 | 过刊浏览 |
改性纳米SiC粉体强化铸造奥氏体不锈钢耐点蚀性能的研究
陈美玲;刘元栋;杨莉;杨军;高宏
大连交通大学材料科学与工程学院 大连 116028
PITTING CORROSION RESISTANCE OF NANO-SiC POWDERS REINFORCED CAST STAINLESS STEEL
CHEN Meiling; LIU Yuandong; YANG Li; YANG Jun; GAO Hong
School of Materials Science and Engineering; Dalian Jiaotong University; Dalian 116028
全文: PDF(1042 KB)  
摘要: 

在生产条件下采用冲入法制备了改性纳米SiC粉体强化奥氏体不锈钢试样,用化学浸泡和电化学检测两种方法研究了纳米SiC粉体对不锈钢耐点蚀性能的影响。结果表明,经改性纳米SiC粉体强化处理后的不锈钢组织明显细化,成分偏析引起的铁素体析出减少;当纳米SiC粉体加入量为0.1 mass%时,不锈钢的点蚀速率降低了 16%,电极电位提高了3倍。能谱分析表明,经强化处理,不锈钢中的Cr成分偏析减轻,有效改善了晶界等易发生点蚀部位的贫Cr现象。

关键词 改性纳米SiC粉体奥氏体不锈钢显微组织点蚀    
Abstract

Cast austenitic stainless steels reinforced by modified SiC nano-powders have been prepared with pour over process under industrial conditions, and the effect of modified SiC nano-powders on the pitting corrosion resistance of the austenitic stainless steel was characterized by pitting chemistry immersion and pitting electrochemistry tests, metallographic analysis, SEM and energy dispersive analysis. The results showed that, compared with the samples without SiC nano-powders, the reinforced stainless steel was characterized with finer microstructure, and less ferrite precipitation owing to composition segregational the pitting corrosion velocity had decreased by 16% and the electric potential increased by three times respectively when the content of nano-SiC rose to 0.1 mass%. Furthermore, the results of energy dispersive analysis of samples with the scanning electron microscopy revealed that the Cr segregation in the reinforced austenitic stainless steels reduced, and the Cr depletion in such zones sensitive to pitting corrosion as grain boundaries has been improved.

Key wordsmodified SiC nano-powders    cast austenitic stainless steel    microstructure    pitting corrosion
收稿日期: 2008-04-11     
ZTFLH: 

TG174.3

 
基金资助:

辽宁省教育厅计划项目(05L038)资助

通讯作者: 陈美玲     E-mail: chenml@djtu.edu.cn
Corresponding author: CHEN Meiling     E-mail: chenml@djtu.edu.cn
作者简介: 陈美玲,女,1960年生,教授,研究方向为铸造合金

引用本文:

陈美玲 刘元栋 杨莉 杨军 高宏. 改性纳米SiC粉体强化铸造奥氏体不锈钢耐点蚀性能的研究[J]. 中国腐蚀与防护学报, 2009, 29(6): 411-414.
CHEN Mei-Ling, LIU Yuan-Dong, YANG Li, YANG Jun, GAO Hong. PITTING CORROSION RESISTANCE OF NANO-SiC POWDERS REINFORCED CAST STAINLESS STEEL. J Chin Soc Corr Pro, 2009, 29(6): 411-414.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I6/411

[1] Qin L Y, Zhang S L, Song S Z. Sensitive temperatures for intergranular corrosion of typical stainless steels [J]. J. Chin. Soc. Corros. Prot., 2006, 26(1): 1-5
    (秦丽雁,张寿禄,宋诗哲. 典型不锈钢晶间腐蚀敏化温度的研究 [J]. 中国腐蚀与防护学报,2006, 26(1): 1-5)
[2] Taboda A, Prank L. Intergranular Corrosion in Nuclear System, Intergranular Corrosion in Stainless Alloys [M]. ASTM STP 656. Steigerwald R F, ed. Philadelphia, PA: ASTM, 1978,85
[3] Liu Q Y, Hou H Y. Controlled rolling of microalloyed steels for ultrafine ferrite [J]. J. Iron Steel Res., 2000, 12(6): 29-32
    (刘清友,侯豁然. 微合金钢超细组织的控制轧制 [J]. 钢铁研究学报,2000,12(6):29-32)
[4] Chen M L, Li J W, Gao H. Research on the microstructure and mechanical properties of surface modified SiC nanometer powders reinforced nodular cast iron [J]. Mater. Rev., 2006, 20(5): 214-215
    (陈美玲,李建卫,高宏. 改性纳米SiC粉体强化球墨铸铁的组织和力学性能的研究 [J]. 材料导报, 2006,20 (5): 214-215)
[5] Li J W, Chen M L, Gao H. Research on the wear resistance of surface modified SiC nano-powders reinforced gray cast iron [J]. Foundry, 2007, 26(1): 68-70
    (李建卫,陈美玲,高宏. 改性纳米SiC粉体强化灰铸铁耐磨性能的研究 [J]. 铸造, 2007, 26(1): 68-70)
[6] Hu D C. Metal Structures and Anticorrosion [M].Beijing:China Astronautic Publishing House, 1987
    (胡德昌. 金属结构与抗蚀 [M]. 北京:宇航出版社,1987)
[7] Yue R, Pan Z J, Li Y. Corrosion analysis for stainless steel [J]. Met. World, 2006, 3: 28-29  
    (岳睿,潘祖军,李艳. 不锈钢的腐蚀分析 [J]. 金属世界, 2006,3: 28-29)
[8] Zhang D K. Local Corrosion of Stainless Steel [M]. Beijing: Science Press, 1982
    (张德康. 不锈钢局部腐蚀 [M]. 北京:科学出版社,1982)
[9] Gu X H. Common corrosion and protection of austenite stainless steel [J]. Jiangxi Chem. Ind., 2006, 4: 220-221
    (古晓辉. 奥氏体不锈钢的常见腐蚀及避免措施 [J]. 江西化工, 2006,4:220-221)
[10] Sun Q X. Corrosion and Protection for Materials [M]. Beijing:Metallurgical Industry Press, 2001
     (孙秋霞. 材料腐蚀与防护 [M]. 北京:冶金工业出版社. 2001)

[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[11] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[12] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[13] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[14] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[15] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.