Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (6): 405-410    
  研究报告 本期目录 | 过刊浏览 |
用随机分析方法研究磁场对纯镁点蚀过程的影响机理
李健1;张涛1;2;孟国哲1;2;邵亚薇1;2;王福会1;2
1. 哈尔滨工程大学腐蚀与防护实验室 超轻材料与表面技术教育部重点实验室 哈尔滨 150001
2. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
STOCHASTIC ANALYSIS OF THE MAGNETIC FIELD INFLUENCE ON THE PITTING MECHANISM OF PURE MAGNESIUM
LI Jian1; ZHANG Tao1;2; MENG Guozhe1;2; SHAO Yawei1;2;WANG Fuhui1;2
1. College of Materials Sciences and Chemical Engineering; Harbin Engineering University; Harbin 150001
2. State Key Laboratory for Corrosion and Protection; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
全文: PDF(722 KB)  
摘要: 

通过恒电位的方法测量了在有无磁场条件下纯镁的电流-时间响应曲线,并用随机的方法对结果进行分析,研究了磁场对纯镁点蚀产生过程和点蚀成长概率的影响。磁场通过洛仑兹力产生磁流体动力学效应(Magnetohydrodynamic),显著地增加了纯Mg的点蚀敏感性:对于点蚀的产生过程,磁场的存在改变了纯镁的点蚀产生机制。在无磁场作用的条件下,纯镁的点蚀产生过程都遵循“生死异地”的B1机制;在有磁场作用的条件下,纯镁的点蚀产生过程都遵循“相同点蚀并联”的A3机制。磁场不仅增大了点蚀产生速度,而且降低了点蚀的再钝化速度。对于点蚀的成长过程,磁场提高了稳态点蚀的成长概率,更容易成长为较大的点蚀坑。

关键词 纯镁点蚀磁场随机分析    
Abstract

Stochastic analysis was applied to the investigation of the influence of the presence of the magnetic field on the pitting mechanism of pure magnesium, in which pitting corrosion was simulated as the combination of two physical processes: pit initiation and pit growth. The result revealed that the magnetic field could strongly affect the ions in the electrolyte by the magnetohydrodynamics (MHD) phenomena. For the pit initiation process, the mechanism of pit initiation was changed by the presence of magnetic field from the parallel birth and death stochastic model (B1) to the parallel birth stochastic model (A3). The pit generation rate $\lambda$ was increased while the repassivation rate μ  was decreased, which indicated that magnetic field accelerated the pit initiation process of pure magnesium. For the pit growth process, the stable pit growth mechanism was not changed, but the ability of repassivation of pit corrosion was decreased resulting in a great probability for the stable pit corrosion to grow up with a higher growth rate and finally develop into larger pit cavity.

Key wordspure magnesium    pitting    magnetic field    stochastic analysis
收稿日期: 2008-09-26     
ZTFLH: 

TG174.36

 
基金资助:

国家自然科学基金项目(50601007)资助

通讯作者: 张涛     E-mail: zhangtao@hrbeu.edu.cn
Corresponding author: ZHANG Tao     E-mail: zhangtao@hrbeu.edu.cn
作者简介: 李健,1985年生,男,硕士生,研究方向为镁及镁合金在磁场作用下的腐蚀机理

引用本文:

李健 张涛 孟国哲 邵亚薇 王福会. 用随机分析方法研究磁场对纯镁点蚀过程的影响机理[J]. 中国腐蚀与防护学报, 2009, 29(6): 405-410.
LI Jian, ZHANG Shou, SHAO Ya-Wei, MENG Guo-Zhe, YU Fu-Hui. STOCHASTIC ANALYSIS OF THE MAGNETIC FIELD INFLUENCE ON THE PITTING MECHANISM OF PURE MAGNESIUM. J Chin Soc Corr Pro, 2009, 29(6): 405-410.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I6/405

[1] Dai Q X. Metallic Materials [M]. Beijing: Chemistry Industry Press,2005:226
     (戴起勋. 金属材料学 [M]. 北京: 化学工业出版社, 2005:226)
[2] Li Y C, Yan C W, Duan H P. Investigation on the repairing effect of alternating voltage electric field on the pitted NiCr alloy electrode [J]. J. Chin. Soc. Corros. Prot., 2003, 23(2): 92-98
     (李运超, 严川伟, 段红平. 交变电场对镍铬合金点蚀破坏的再钝化修复研究 [J]. 中国腐蚀与防护学报, 2003, 23(2): 92-98)
[3] Rao S X, Zhu L Q, Li D, et al. Effects of mechanochemistry to the pitting behaviour of LY12CZ aluminum alloy [J]. J. Chin. Soc.Corros. Prot., 2007, 27(4): 228-232
     (饶思贤, 朱立群, 李荻等. 力学化学效应对LY12CZ点蚀行为的影响 [J]. 中国腐蚀与防护学报, 2007, 27(4): 228-232)
[4] Lu Z P, Huang D L, Yang W, et al. Effect of magnetic field and dichromate on anodic polarization behavior of iron in sulfuric acid [J]. J. Chin. Soc. Corros. Prot., 2001,21(1): 01-09
    (吕战鹏, 黄德伦, 杨武等. 重铬酸根与磁场对铁在硫酸溶液中阳极极化行为的影响 [J]. 中国腐蚀与防护学报, 2001, 21(1): 01-09)
[5] Lu Z P, Huang D L, Yang W, et al. Effect of magnetic field on open circuit corrosion and polarization resistance for iron in sulfuric acid containing dichromate [J]. J. Chin. Soc. Corros. Prot., 2000, 20(4): 230-236
     (吕战鹏, 黄德伦, 杨武等. 含重铬酸根硫酸溶液中磁场对铁自腐蚀状态及极化电阻的影响 [J]. 中国腐蚀与防护学报, 2000, 20(4): 230-236)
[6] Eugene J, Kelly. Magnetic field effects on electrochemical reactions occurring at metal /flowing-electrolyte interfaces [J] J. Electrochem. Soc, 1977, 124(7) : 987-994.
[7] Shinohara K, Aogaki R. Magnetic field effect on copper corrosion in nitric acid [J]. Electrochemistry,1999,67(2): 126-131
[8] Chiba A, Kawazu K, Nakano O, et al. The effects of magnetic fields on the corrosion of aluminum foil in sodium chloride solutions [J]. Corros. Sci., 1994, 27(3):539-543
[9] Rucinskiene A, Bikulcius G, Gudaviciute L, et al.Magnetic field effect on stainless steel corrosion in FeCl3 solution [J]. Electrochem. Commun., 2002, 4(1): 86-91
[10] Chiba A, Ogawa T. Effects of magnetic field direction on the dissolution of copper, zinc, and brass in nitric acid [J].Corros. Eng. 1988, 37(10) :531
[11] Vorkapic L Z, Draic D M. The dissolution of iron under cathodic polarization [J]. Corros. Sci., 1979, 19(7): 643-651
[12] Shinohara K, Hashimoto K, Aogaki R. Shift of the iron corrosion potential and acceleration of the mass transport of dissolved oxygen by the micro-MHD effect [J]. Chem. Lett., 2002,31(7): 738-739
[13] Shibata T, Ameer M A M. Stochastic processes of pit generation on zirconium with an anodic oxide film [J].Corros. Sci., 1992, 33(10): 1633-1643
[14] Trueman A. R. Determining the probability of stable pit initiation on aluminium alloys using potentiostatic electrochemical measurements [J]. Corros. Sci., 2005, 47(9) 2240-2256

[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[11] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[12] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[13] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[14] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[15] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.