Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (6): 401-404    
  研究报告 本期目录 | 过刊浏览 |
流动状态下X65管线钢CO2腐蚀产物膜结构和力学性能的评价
俞芳;高克玮;路民旭
北京科技大学材料科学与工程学院  北京 100083
INVESTIGATION OF STRUCTURE AND MECHANICAL PROPERTIES OF CO2 CORROSION SCALE FORMED UNDER VARIOUS FLOW RATES
YU Fang; GAO Kewei; LU Minxu
School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
全文: PDF(2094 KB)  
摘要: 

针对油气行业常用的X65管线钢,研究了含CO2腐蚀介质中钢表面形成的腐蚀产物膜结构和力学性能的特征以及介质流动造成的影响。结果表明,静态条件下形成的腐蚀产物膜的主要成分为(Fe,Ca,Mg)CO3,动态条件下的主要成分为(Fe,Ca)CO3;介质的流动能够促进腐蚀产物膜的形成,但对膜的硬度以及杨氏模量影响不大;腐蚀产物膜的断裂韧性随着流速的增大先下降后上升,流动状态下内层腐蚀产物膜的致密性较好,膜与基体的结合强度较高。

关键词 X65管线钢CO2腐蚀腐蚀产物膜流动力学性能    
Abstract

The structure and mechanical properties of CO2 corrosion scale formed on X65 pipeline steel in simulated CO2 corrosion environment in oil field under various flow rates were investigated. XRD and EDS analysis indicate that at static condition, the composition of the scale is (Fe,Ca,Mg)CO3, while the scale changes to (Fe,Ca)CO3 at dynamic conditions. The increment in flow rate increased the thickness of the scale remarkably, but had little influence on the hardness and Young's modulus of the scale. The fracture toughness of the scale exhibited the lowest value at the flow rate of 0.5 m/s, whereas the adhesion strength increased with increasing the flow rate.

Key wordsX65 pipeline steel    CO2 corrosion    corrosion scale    flow    mechanical properties
收稿日期: 2008-03-28     
ZTFLH: 

TG172.9

 
基金资助:

国家自然科学基金项目(50231020,50571012)资助

通讯作者: 高克玮      E-mail: kwgao@mater.ustb.edu.cn
Corresponding author: GAO Kewei     E-mail: kwgao@mater.ustb.edu.cn
作者简介: 俞芳,女,1974年生,硕士,研究方向为材料表面结构和性能的表征

引用本文:

俞芳 高克玮 路民旭. 流动状态下X65管线钢CO2腐蚀产物膜结构和力学性能的评价[J]. 中国腐蚀与防护学报, 2009, 29(6): 401-404.
GAO Ke-Wei, YU Fang. INVESTIGATION OF STRUCTURE AND MECHANICAL PROPERTIES OF CO2 CORROSION SCALE FORMED UNDER VARIOUS FLOW RATES. J Chin Soc Corr Pro, 2009, 29(6): 401-404.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I6/401

[1] Mora-Mendoza J L, Chacon-Nava J G. Influence of turbulent flow on the localized corrosion process of mild steel with inhibited aqueous carbon dioxide systems [J].Corrosion,2002,58(7):608-619
[2] Nesic S, Solvi G T, Enerhaug J.Comparison of the rotating cylinder and pipe flow tests for flow-sensitive carbon dioxide [J]. Corrosion, 1995, 51(10): 773-787
[3] Schmitt G, Simon T, Hausler R H. CO2 erosion corrosion and its inhibition under extreme shear stresses. II. performance of inhibitors [C]. Corrosion/93, Houston,\linebreak TX:NACE,1993:86
[4] Schmitt G, Bosch C, Pankoke U, et al. Evaluation of critical flow intensities for FILC in sour gas production. Corrosion/98 [C]. Houston,TX:NACE,1998:46
[5] Schmitt G,Mueller M. Critical wall shear stresses in CO2 corrosion of carbon steel [C]. Corrosion/99,Houston,TX: NACE,1999:44
[6] Schmitt G,Gudde T. Local mass transport coefficients and local wall shear stresses at flow disturbances.Corrosion/95 [C]. Houston,TX:NACE,1995:102
[7] Schmitt G, Bosch C. A probabilistic model for flow induced localized corrosion [C]. Corrosion/00, Houston,TX:NACE,2000:49
[8] Schmitt G, Muekker M, Paperfuss M, et al. Understanding localized CO2 corrosion of carbon steel from physical properties of iron carbonate scales [C]. Corrosion/99, Houston,TX:NACE,1999:38
[9] Pharr G M. Measurement of mechanical properties by ultra-low load indentation [J]. Mater. Sci. Eng., 1998, A253: 151-159

[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[3] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[4] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[5] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[6] 叶赛, MasoumehMoradi, 宋振纶, 胡方勤, 孙朝晖, 龙剑平. 杀鱼假交替单胞菌对模拟海水流动环境下Q235碳钢腐蚀的抑制行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[7] 鲍明昱, 任呈强, 胡静思, 刘博, 李佳蒙, 王丰, 刘丽, 郭小阳. 油气管材应力诱导腐蚀电化学行为探讨[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[8] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[9] 陈磊,裴志亮,肖金泉,宫骏,孙超. 磁过滤电弧离子镀制备TiAlN涂层的结构与性能表征[J]. 中国腐蚀与防护学报, 2017, 37(3): 241-246.
[10] 张弟,梁平,张云霞,史艳华,秦华. 库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[11] 董洋洋, 黄峰, 程攀, 胡骞, 刘静. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变[J]. 中国腐蚀与防护学报, 2015, 35(5): 386-392.
[12] 刘栓, 赵霞, 陈长伟, 侯保荣, 陈建敏. 油田输油管线钢X65的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 393-399.
[13] 梁平, 王莹. 覆有短期腐蚀产物膜的X80钢的电化学行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.
[14] 赵景茂 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的
缓蚀协同作用机理
[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
[15] 刘玉,李焰. 天然气管线钢CO2腐蚀研究进展[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.