Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (4): 277-285    
  本期目录 | 过刊浏览 |
Impurity Segregation at TGO/Bondcoat Interfaces and Its Effect on TGO Adherence
P. Y. HOU
Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley; CA 94720; USA
全文: PDF(1219 KB)  
摘要: 

Impurity segregation at the interfaces between thermally grown aluminum oxide and a few coatings deposited on single crystal Ni-based superalloys are reviewed. Results are compared with studies made at oxide/metal interfaces formed on model Al2O3-forming alloys. The coatings were NiPtAl on CMSX4 or AM1 with two different bulk sulfur contents, and NiCoCrAlY on PWA1484. Auger electron microscopy was used to study the chemistry at the TGO/coating interface after portions of the oxide scale were removed in ultra high vacuum by scratching the oxidized sample. The extent of oxide spallation in relation to the scratch width was utilized to evaluate the interfacial strength, which was then related to the interface chemistry, particular its sulfur level. Results show strong relationship between sulfur segregation and the alloy substrate composition. This relationship is discussed in terms of the effects of Pt, Hf, Y and Cr and the alloy sulfur content.

关键词 sulfurphosphorusoxidationadhesionreactive elementplatinum    
收稿日期: 2009-06-10     
通讯作者: P. Y. Hou     E-mail: PYHou@lbl.gov
作者简介: P. Y. HOU

引用本文:

P. Y. HOU. Impurity Segregation at TGO/Bondcoat Interfaces and Its Effect on TGO Adherence[J]. 中国腐蚀与防护学报, 2009, 29(4): 277-285.

链接本文:

https://www.jcscp.org/CN/Y2009/V29/I4/277



[1] Gell M, Vaidyanathan K, Barber B, Cheng J, Jordon E.  Metall. Mater. Trans., 1999, 30A: 427.


[2] Meier S M, Nissley D M, Sheffler K D, Cruse TA.  J. Eng.Gas. Turb. Power., 1992, 114: 258.


[3] Spitsberg I T, Mumm D R, Evans A G.  Mater. Sci. Eng.A., 2005, 394: 176-91.


[4] Haynes J A, Pint B A, More K L, Zhang Y, Wright I G.  Oxid. Met., 2002, 58: 513.


[5] Hou P Y.  Ann. Rev. Mater. Res., 2008, 38: 275.


[6] Kiely J, Yeh T, Bonnell D A.  Surf. Sci., 1997, 393: L126.


[7] Zhang W, Smith J R, Wang X G, Evans A G.  Phy. Rev. 2003, 67B: 245414.


[8] Hou P Y, Priimak K.  Oxid. Met., 2005, 63: 113.


[9] Smith J R, Jiang Y, Evans A G.  Int. J. Mater. Res., 2007, 12: 1214.


[10] Hayashi S, Wang W, Sordelet D J, Gleeson B.  Metall.Mater. Trans. 2005, 36A: 1769.


[11] Whittle D P, Stringer J. Phil.  Trans. R. Soc. London., 1998, A295: 309.


[12] Pint BA. In: Tortorelli P, Wright I G, Hou P Y. eds,  Proc.John Stringer Symposium on High Temp Corrosion, ASM Int., OH, 2001: 52


[13] Funkenbusch W, Smeggil J G, Bornstein N S.  Metall.Trans., 1985, 16A: 1164.


[14] Smialek J L, Browning R. In: Munir ZA,Cubicciott D, eds.  Proc. Sym. High Temp.Mater Chem. III, the Electrochem Soc., PA. 1985: 82-2: 258


[15] Hou P Y,  Oxid. Met., 1999, 52: 337.


[16] Hou P Y, Isumi T, Gleeson B. Submitted to Oxid Metals. 2008


[17] Felten E J.  Oxid. Met., 1976, 10: 23.


[18] Cadoret Y, Bacos M P, Josso P, Maurice V,Marcus P, Zanna S.  Mater. Sci. Forum. 2004, 461-464: 274.


[19] Hou P Y, McCarty K F.  Scr. Met., 2006, 54: 937.


[20] Hou P Y Special issue on Interface Science of Thermal Barrier Coatings,  J. Mater. Sci., 2008, DOI 10.1007/s10853-008-2969-3.


[21] Warnes B M, Punola D C.  Surf. Coat., Technol., 1997, 94-95: 1.


[22] Hou P Y, Tolpygo V K.  Surf. Coat., Technol., 2007, 202: 623.


[23] Meier S M, Nissley D M, Sheffler K D.  National Aeronautics and Space Administration, Cleveland, OH. 1991, Report vol. 189111


[24] Hou P Y. In: Hou PY, McNallan MJ, Oltra R, Opila EJ, Shores DA, eds. High Temperature Corrosion and Materials Chemistry,Pennington, PA: Electrochem. Soc., 1998: 198


[25] Hou P Y, Ackerman G D.  Appl. Surf. Sci., 2001, 178: 156.


[26] Molins R, Rouzou I, Hou P Y.  Oxid. Met., 2006, 65: 263.


[27] Molins R, Rouzou I, Remy L, Le Biavant-Guerrier K, Jomard F.  Mater. High Temp., 2005, 22: 359.


[28] Mendis B G, Tryon B, Pollock T M, Hemker K J.  Surf.Coat. Technol., 2006, 201: 3918.


[29] de Plessis J. 1990. Surface segregation.  Diffusion and Defect Data.Part B: Solid State Phenomena. Brookfield, VT: Sci-Tech Publ, 11: 22-32


[30] Uebing C.  Prog. Surf. Sci., 1996, 53: 297.


[31] Hou P Y.  Mater. Corros., 2000, 51: 329.


[32] Sigler D R.  Oxid. Met., 1989, 32: 337.


[33] Qin F, Jiang C, Anderegg J W, Jenks C J, Gleeson B, Sordelet D J Thiel P A.  Surf. Sci., 2007, 601: 376.


[34] Gauffier A, Saiz E, Tomsia A P, Hou PY.  J. Mater. Sci., 2007, 42: 9524.


[35] Grabke H J.  Steel. Res., 1986, 57: 178.


[36] Bradley J R, Aaronson H I, Russell K C, Johnson W C.  Metall., Trans., 1977, 8A: 1955.


[37] LejEek P, Krajnikov A V, Ivashchenko YuN, Militzer M,Adamek J.  Surf. Sci., 1993, 280: 325.


[38] Nikolaeva A V, Nikolaev YuA, Kevorkyan YuR. Atom. Energy, 2001, 91: 2325.


[39] Viefhaus H, Richarz B.  Mater. Corros., 1995, 46: 306.


[40] Hong S H, Kang S J, Yoon, D N, Baek W H.  Metall. Trans., 1991, 22A: 2969.

[1] F. GESMUNDO S. WANG Y. NIU. Complete Maps for the Internal Oxidation of Ideal Ternary Alloys Forming Insoluble Oxides under High Oxidant Pressures[J]. 中国腐蚀与防护学报, 2009, 29(4): 253-261.
[2] F.C. RIZZO M.J. MONTEIRO S.R.J. SAUNDERS.
Effect of Alloyingm Additions on the Oxidation of High Speed Steels under Dry and Wet Conditions
[J]. 中国腐蚀与防护学报, 2009, 29(4): 241-247.
[3] W. GAO Z. W. LI. High Temperature Oxidation as a Production Route for Electronic Materials[J]. 中国腐蚀与防护学报, 2009, 29(4): 248-252.