Please wait a minute...
中国腐蚀与防护学报  2005, Vol. 25 Issue (2): 119-123     
  综述 本期目录 | 过刊浏览 |
油气田中CO2腐蚀的预测模型
张国安;陈长风;路民旭;吴荫顺
北京科技大学腐蚀与防护中心
PREDICTION MODELS FOR CO2 CORROSION OF OIL AND GAS FIELDS
Guoan Zhang;Changfeng Chen;Minxv Lu;Yinshun Wu
北京科技大学腐蚀与防护中心
全文: PDF(162 KB)  
摘要: 综述了油气田中CO2腐蚀速率的预测模型。关于CO2腐蚀速率的预测模型主要包括经验模型(Empirical models),半经验模型(Semi-empirical models)和机理模型(Mechanistic models)三类。经验模型是根据实验室和油气田现场腐蚀数据建立的预测模型,这类模型比较简洁,与现场的试验数据吻合较好。半经验模型先根据腐蚀过程中的化学、电化学过程和介质的传输过程建立腐蚀速率相关的动力学模型,然后利用实验室数据以及现场数据确定各因素的影响因子。机理模型主要是应用腐蚀热力学、动力学以及物质扩散动力学,基于CO2腐蚀机理建立腐蚀速率的预测模型。由于CO2腐蚀的影响因素很多,腐蚀机理异常复杂,要建立准确、普适的预测模型较为困难。目前这三类预测模型均存在一定的不完善性,应对其进行更深入的研究和改进。
关键词 油气田CO2腐蚀腐蚀速率预测模型    
Abstract:Several prediction models for CO2 corrosion of oil and gas fields have been reviewed. These models are mainly divided into three categories: empirical models, semi-empirical models and mechanistic models. Empirical models are based on laboratory or field data. They are simple and coincide with much of field data quite well. Semi-empirical models are developed according to chemical, electrochemical reactions kinetics and diffusion of species to and from the bulk phase. Then deviation from prediction models will be corrected by multiplying with factors. Mechanistic models are based on CO2 corrosion mechanism combining corrosion thermodynamics and kinetics with diffusion kinetics. Because there are many factors affecting CO2 corrosion and the CO2 corrosion mechanism is extremely complicated, it is quite difficult to develop an accurate universal prediction models. The present prediction models, including empirical models, semi-empirical models and mechanical models, are imperfect and need further improvement.
Key wordsoil and gas fields    CO2 corrosion    corrosion rate    prediction models
收稿日期: 2003-10-18     
ZTFLH:  TG197  
通讯作者: 张国安     E-mail: zga2003@163.net
Corresponding author: Guoan Zhang     E-mail: zga2003@163.net

引用本文:

张国安; 陈长风; 路民旭; 吴荫顺 . 油气田中CO2腐蚀的预测模型[J]. 中国腐蚀与防护学报, 2005, 25(2): 119-123 .
Guoan Zhang, Changfeng Chen, Minxv Lu, Yinshun Wu. PREDICTION MODELS FOR CO2 CORROSION OF OIL AND GAS FIELDS. J Chin Soc Corr Pro, 2005, 25(2): 119-123 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2005/V25/I2/119

[1]CO2CorrosionRateCalculationModel[S].NorsokStandardNo.M-506
[2]OlsenS .CO2 corrosionpredictionbyuseoftheNorsokM -506model-guidelineandlimitations[A].Corrosion/03[C].Houston,TX :NACE ,2003:623
[3]JepsonWP ,StitzelS ,KangC ,GopalM .Modelforsweetcorrosioninhorizontalmultiphaseslugflow[A].Corrosion/97[C].Houston,TX :NACE ,1997:11
[4]GartlandPO .Choosingtherightpositionsforcorrosionmonitoringonoilandgaspipelines[A ].Corrosion/98[C].Houston,TX :NACE ,1998:83
[5]GartlandPO ,SalomonsenJE .Apipelineintegritymanagementstrategybasedonmultiphasefluidflowandcorrosionmodeling[A].Corrosion/99[C].Houston,TX :NACE ,1999:622
[6]GartlandPO ,JohnsenR .Applicationofinternalcorrosionmodelingintheriskassessmentofpipeline[A].Corrosion/03[C].Houston,TX :NACE ,2003:179
[7]DeWaardC ,MilliamsDE .Carbonicacidcorrosionofsteel[J].Cor rosion,1975,31(5):177
[8]DeWaardC ,LotzU ,MilliamsDE .PredictivemodelforCO2 corro sionengineeringinwetnaturalgaspipelines[J].Corrosion,1991,47(12):976
[9]DeWaardC ,LotzU .PredictionofCO2 corrosionofcarbonsteel[A].Corrosion/93[C].Houston,TX :NACE ,1993:69
[10]DeWaardC ,LotzU ,DugstadA .InfluenceofliquidflowvelocityonCO2 corrosion:asemi-empiricalmodel[A].Corrosion/95[C].Houston,TX :NACE ,1995:128
[11]DeWaardC ,Corcon,Aerdenhout,etal.Theinfluenceofcrudeoilsonwelltubingcorrosionrates[A].Corrosion/03[C].Houston,TX :NACE ,2003:629
[12]HedgesB ,PaisleyD ,WoollamR .Thecorrosioninhibitoravailabili tymodel[A].Corrosion/99[C].Houston,TX :NACE ,1999:34
[13]DeWaardC ,SmithL ,BartlettP ,CunninghamH .Modellingcorro sionratesinoilproductiontubing[A].Eurocorr2001[C].Milano,Italy:AssociazioneItalianadiMatallurgia,2001:254
[14]SrinivasanS ,KaneRD .PredictionofcorrosivityofCO2/H2Spro ductionenvironments[A].Corrosion/96[C].Houston,TX :NACE ,1996:11
[15]SangitaKA ,SrinivasanS .AnanalyticalmodeltoexperimentallyemulatefloweffectsinmultiphaseCO2/H2Ssystems[A].Corro sion/00[C].Houston,TX :NACE ,2000:58
[16]SrinivasanS ,KaneRD .Criticalissuesintheapplicationandevalu ationofacorrosionpredictionmodelforoilandgassystems[A].Corrosion/03[C].Houston,TX :NACE ,2003:640
[17]NesicS ,PostlethwaiteJ ,OlsenS .Anelectrochemicalmodelforpredictionofcorrosionofmildsteelinaqueouscarbondioxidesolu tions[J].Corrosion,1996,52(4):280
[18]DugstadA ,LundeL ,VidemK .ParametricstudyofCO2 corrosionofcarbonsteel[A].Corrosion/94[C].Houston,TX :NACE ,1994:14
[19]NesicS ,NordsveenM ,NyborgR ,StangelandA .AmechanisticmodelforCO2 corrosionwithprotectiveironcarbonatefilms[A].Corrosion/01[C].Houston,TX :NACE ,2001:40
[20]NesicS ,LeeK -LJ ,RuzicV .Amechanisticmodelofironcarbon atefilmgrowthandtheeffectonCO2 corrosionofmildsteel[A].Corrosion/02[C].Houston,TX :NACE ,2002:237
[21]WangSH ,NesicS .OncouplingCO2 corrosionandmultiphaseflowmodels[A].Corrosion/03[C].HoustonTX :NACE ,2003:631
[22]NordsveenM ,NesicS ,NyborgR ,StangelandA .Amechanisticmodelforcorrosiondioxidecorrosionofmildsteelinthepresenceofprotectiveironcarbonatefilms-part1:theoryandverification[J].Corrosion,2003,59(3):616
[23]NesicS ,NordsveenM ,Ryborg,StangelandA .Amechanisticmodelforcorrosiondioxidecorrosionofmildsteelinthepresenceofpro tectiveironcarbonatefilms-part2:anumericalexperiment[J].Corrosion,2003,59(5):489
[24]NesicS ,LeeK -LJ .Amechanisticmodelforcorrosiondioxidecorrosionofmildsteelinthepresenceofprotectiveironcarbonatefilms-part3:filmgrowthmodel[J].Corrosion,2003,59(5):443
[25]WangHW ,CaiJY ,JepsonWP .CO2 corrosionmechanisticmod elingandpredictioninhorizontalslugflow[A].Corrosion/02[C].Houston,TX :NACE ,2002:238
[26]PotBFM .MechanisticmodelsforthepredictionofCO2 corrosionratesundermultiphaseflowconditions[A ].Corrosion/95[C].Houston,TX :NACE ,1995:137
[27]NyborgR ,AnderssonP ,NordsveenM .ImplementationofCO2corrosionmodelsinathree-phasefluidflowmodel[A].Corrosion/00[C].Houston,TX :NACE ,2000:48
[1] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[2] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[3] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[4] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[5] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[6] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[7] 朱明,余勇,张慧慧. L245钢在不同温度下的油气田模拟水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
[8] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[9] 白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[10] 王春霞,陈敬平,张晓红,王赪胤. 溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
[11] 张晨,赵景茂. CO2饱和盐水溶液中咪唑啉季铵盐与3种阴离子表面活性剂之间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(6): 496-504.
[12] 朱志平,银朝晖,柳森,肖剑峰. 紫铜T2在高浓度H2S模拟环境中的腐蚀行为及预测模型[J]. 中国腐蚀与防护学报, 2015, 35(4): 333-338.
[13] 张玉成,鞠新华,庞晓露,高克玮. O2浓度对钢在超临界CO2中腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 220-226.
[14] 王凤平,刘岚,丁言伟,胡隋军,刘照斌,刘丹,张丽. 油气田H2S腐蚀体系模拟方法探究[J]. 中国腐蚀与防护学报, 2015, 35(3): 251-256.
[15] 赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.