Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (1): 31-37    DOI: 10.11902/1005.4537.2019.220
  研究报告 本期目录 | 过刊浏览 |
两种新型曼尼希碱缓蚀剂的性能及吸附行为研究
吕祥鸿1,张晔1(),闫亚丽1,侯娟2,李健1,王晨1
1. 西安石油大学材料科学与工程学院 西安 710065
2. 中国石油大学 (北京) 新能源与材料学院 北京 102249
Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors
LV Xianghong1,ZHANG Ye1(),YAN Yali1,HOU Juan2,LI Jian1,WANG Chen1
1. School of Material Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2. School of New Energy and Materials, China University of Petroleum, Beijing 102249, China
全文: PDF(3260 KB)   HTML
摘要: 

通过Mannich反应合成ZJ-1、ZJ-2两种曼尼希碱缓蚀剂,利用红外光谱对产物进行表征,采用极化曲线、电化学阻抗谱和分子动力学模拟等方法评价两种缓蚀剂对P110钢的缓蚀效果,并探讨其缓蚀作用机理和吸附行为。结果表明:合成的缓蚀剂在1 mol/L NaCl+CO2环境中对P110钢均有一定的缓蚀效果,其中ZJ-1缓蚀剂的缓蚀效果更好,缓蚀效率可达92.06%;两种缓蚀剂均为阳极控制为主的混合型缓蚀剂,通过缓蚀剂在金属表面上形成的吸附膜使得腐蚀过程的电极反应都难于进行,从而起到减缓腐蚀的作用;ZJ-1和ZJ-2缓蚀剂分子均可驱替水分子而吸附在金属表面,其活性原子N和O提供的孤对电子与金属表面Fe原子的空轨道形成配位键,具有较强的吸附作用力,相比于ZJ-2曼尼希碱缓蚀剂,ZJ-1曼尼希碱缓蚀剂分子与Fe表面的吸附能更高,缓蚀性能更好。

关键词 缓蚀剂曼尼希碱缓蚀作用机理吸附行为分子动力学模拟    
Abstract

Two Mannich base corrosion inhibitors, ZJ-1 and ZJ-2, were synthesized by Mannich reaction. The products were characterized by infrared spectroscopy. Corrosion inhibition effect of these two inhibitors on P110 steel were studied by means of polarization curve measurement, electrochemical impedance spectroscopy and molecular dynamics simulation. While the relevant corrosion inhibition mechanism and adsorption behavior were also discussed. Results showed that the two synthesized corrosion inhibitors presented obvious corrosion inhibition effect on P110 steel in 1 mol/L NaCl+CO2 environment, however, ZJ-1 had better corrosion inhibition effect with a corrosion inhibition efficiency up to 92.06%. These two corrosion inhibitors were belonged to mixed corrosion inhibitors based on anode control. Both the anode reaction and the cathode reaction were restrained in the corrosion process due to the adsorption film formed on the metal surface by corrosion inhibitors. Furthermore, ZJ-1 and ZJ-2 can displace water molecules and adsorb on the metal surface, the lone pair electrons provided by the active atoms N and O could form coordination bonds with the vacant orbital of Fe. Therefore, corrosion inhibitor molecules can be adsorbed on the metal surface and the corrosion inhibition effect is enhanced due to strong chemical forces of the bonds. Compared with ZJ-2 inhibitor, ZJ-1 inhibitor molecule has higher adsorption energy and better corrosion inhibition performance to the surface of Fe-based alloys.

Key wordscorrosion inhibitor    Mannich base    corrosion inhibition mechanism    adsorption behavior    molecular dynamics simulation
收稿日期: 2019-05-21     
ZTFLH:  TG174.42  
基金资助:陕西省自然科学基金(2018JQ5108);陕西省自然科学基金(2018JQ5198);西安石油大学研究生创新与实践能力培养计划(YCS19113059)
通讯作者: 张晔     E-mail: ZhangY931126@163.com
Corresponding author: Ye ZHANG     E-mail: ZhangY931126@163.com
作者简介: 吕祥鸿,男,1971年生,教授,博士

引用本文:

吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
Xianghong LV, Ye ZHANG, Yali YAN, Juan HOU, Jian LI, Chen WANG. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 31-37.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.220      或      https://www.jcscp.org/CN/Y2020/V40/I1/31

图1  ZJ-1和ZJ-2曼尼希碱缓蚀剂合成原理
图2  ZJ-1和ZJ-2曼尼希碱缓蚀剂的红外光谱图
图3  P110钢在不同缓蚀剂溶液中的极化曲线
Type of corrosion inhibitorCorrosion inhibitor concentration / mg·L-1Ecorr / Vba / mV·dec-1-bc / mV·dec-1Icorr / μA·cm-2η / %
Blank10-0.698955.64605.5645.656---
ZJ-1-0.6391171.86590.653.62592.06
ZJ-2-0.6903161.58539.7510.06077.97
表1  P110钢在不同缓蚀剂溶液中的拟合电化学参数
图4  P110钢在不同缓蚀剂溶液中的电化学阻抗谱图及其等效电路
Type of corrosion inhibitorRs / Ω·cm2Cdl / F·cm-2Rt / Ω·cm2RL / Ω·cm2L / kΩ·cm2Cm / F·cm-2Rm / Ω·cm2Rp / Ω·cm2
Blank3.4462.530×10-431.43312.7107.32.078×10-343.672.16
ZJ-13.2941.996×10-41421.99------2.327×10-5399.81821.79
ZJ-23.2322.886×10-4456.20------2.322×10-5167.8624
表2  P110钢在不同缓蚀剂溶液中的各阻抗参数
图5  ZJ-1和ZJ-2曼尼希碱缓蚀剂分子的初始构型和平衡吸附构型
图6  ZJ-1和ZJ-2曼尼希碱缓蚀剂分子在Fe(001) 面上吸附的温度平衡曲线和能量波动曲线
MoleculeEmolecule / kJ·mol-1Esurface / kJ·mol-1Etotal / kJ·mol-1Eadsorption / kJ·mol-1
H2O1.25-72093.09-72115.30-23.46
ZJ-182.94-72964.74-73135.77-253.97
ZJ-230.52-73014.65-73179.12-194.99
表3  缓蚀剂分子与Fe(001) 面的吸附能
[1] Likhanova N V, Domínguez-Aguilar M A, Olivares-Xometl O, et al. The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment [J]. Corros. Sci., 2010, 52: 2088
[2] Manciulea I, Bogatu C, Cazan C, et al. Investigation of some Mannich bases corrosion inhibitors for carbon steel [J]. Solid State Phenom., 2015, 227: 63
[3] Zhang C, Zhao J M. Synergistic inhibition effects of octadecylamine and tetradecyl trimethyl ammonium bromide on carbon steel corrosion in the H2S and CO2 brine solution [J]. Corros. Sci., 2017, 126: 247
[4] Khaled K F. Experimental and atomistic simulation studies of corrosion inhibition of copper by a new benzotriazole derivative in acid medium [J]. Electrochim. Acta, 2009, 54: 4345
[5] Kornherr A, Hansal S, Hansal W E G, et al. Molecular dynamics simulations of the adsorption of industrial relevant silane molecules at a zinc oxide surface [J]. J. Chem. Phys., 2003, 119: 9719
[6] Zhao J M, Zhao Q F, Jiang R J. Relationship between structure of imidazoline derivates with corrosion inhibition performance in CO2/H2S environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 142
[6] (赵景茂, 赵起锋, 姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究 [J]. 中国腐蚀与防护学报, 2017, 37: 142)
[7] Xia S W, Qiu M, Yu L M, et al. Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance [J]. Corros. Sci., 2008, 50: 2021
[8] Zhang J P, Zhang Q Y, Ren H, et al. Inhibition performance of 2-mercaptobenzothiazole derivatives in CO2 saturated solution and its adsorption behavior at Fe surface [J]. Appl. Surf. Sci., 2007, 253: 7416
[9] Zheng J S. Research status and application of corrosion inhibitors [J]. Corros. Prot., 1997, 18(1): 34
[9] (郑家燊. 缓蚀剂的研究现状及其应用 [J]. 腐蚀与防护, 1997, 18(1): 34)
[10] Zhu Y K, Free M L, Woollam R, et al. A review of surfactants as corrosion inhibitors and associated modeling [J]. Prog. Mater. Sci., 2017, 90: 159
[11] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008: 2
[11] (曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 2)
[12] Bedair M A, El-Sabbah M M B, Fouda A S, et al. Synthesis, electrochemical and quantum chemical studies of some prepared surfactants based on azodye and Schiff base as corrosion inhibitors for steel in acid medium [J]. Corros. Sci., 2017, 128: 54
[13] Hamani H, Douadi T, Daoud D, et al. 1-(4-Nitrophenylo-imino) -1-(phenylhydrazono)-propan-2-one as corrosion inhibitor for mild steel in 1 M HCl solution: Weight loss, electrochemical, thermodynamic and quantum chemical studies [J]. J. Electroanal. Chem., 2017, 801: 425
[14] Su T J, Luo Y B, Li K H, et al. Corrosion inhibition performance of benzimidazole N-mannich base for mild steel in hydrochloric acid [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 415
[14] (苏铁军, 罗运柏, 李克华等. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2015, 35: 415)
[15] Zhang J, Yu W Z, Yan Y G, et al. Molecular dynamics simulation of the adsorption behavior of imidazoline corrosion inhibitors on a Fe(001) surface [J]. Acta Phys. -Chim. Sin., 2010, 26: 1385
[15] (张军, 于维钊, 燕友果等. 咪唑啉缓蚀剂在Fe(001) 表面吸附行为的分子动力学模拟 [J]. 物理化学学报, 2010, 26: 1385)
[16] Liu J, Liu Z, Liu J, et al. Inhibition performance of a new 3,5-dibromosalicylaldehyde-2-thenoyl hydrazine schiff base for carbon steel in oilfield water and relevant molecular dynamics simulation [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 101
[16] (刘洁, 刘峥, 刘进等. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟 [J]. 中国腐蚀与防护学报, 2014, 34: 101)
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[7] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[8] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[9] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[10] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[11] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[12] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[13] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[14] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[15] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.