Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (1): 51-56    DOI: 10.11902/1005.4537.2019.216
  研究报告 本期目录 | 过刊浏览 |
中温时效处理对SAF2304双相不锈钢耐蚀性的影响
武栋才,韩培德()
太原理工大学材料科学与工程学院 新材料界面科学与工程教育部重点实验室 太原 030024
Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel
WU Dongcai,HAN Peide()
Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering,Taiyuan University of Technology, Taiyan 030024, China
全文: PDF(3313 KB)   HTML
摘要: 

采用金相显微镜 (OM)、动电位极化曲线和电化学阻抗谱对不同温度 (600~800 ℃) 时效处理2 h和不同时间 (0.25~5 h) 700 ℃时效处理SAF2304双相不锈钢的显微组织和耐蚀性进行研究。结果表明:1050 ℃固溶1 h试样,经600,650,700,750和800 ℃时效处理2 h后,随着温度的升高,试样中析出相先增加。700 ℃试样中铁素体α相和奥氏体γ相相界处析出相最多,对应的耐蚀能力最差,表明700 ℃是SAF2304析出相析出敏感温度,之后温度继续升高至800 ℃,析出相明显减少,耐蚀性能增强。700 ℃时效处理0.25,0.5,1,2,3,4和5 h的试样,随着时效时间的增加析出相越来越多,钝化膜越来越不均匀不致密,耐蚀性能越来越差。

关键词 2304双相不锈钢析出相时效处理耐蚀性敏感温度    
Abstract

The microstructure and corrosion resistance of SAF2304 duplex stainless steel after aging treatment for 2 h at 600, 650, 700, 750 and 800 ℃, as well as at 700 ℃ for 0.25, 0.5,1, 2, 3, 4 and 5 h respectively were characterized by means of optical microscopy (OM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. The results showed that with the increasing aging temperature, the amount of secondary phase precipitated at grain-boundaries of ferrite/austenite increased and the maximum value of which emerged at 700 ℃ sharply, correspondingly the steel after solution treated at 1050 ℃ for 1 h and aged at 700 ℃ for 2 h showed the worst corrosion resistance. Therefore, the SAF2304 duplex stainless steel is sensitive to the aging treatment at 700 ℃ in terms of the secondary phase precipitation and corrosion resistance. For the steel aged at 800 ℃, the precipitated phase was rarely observed, and its corrosion resistance was enhanced. Furthermore, with the increasing time for the aging at 700 ℃, precipitates of secondary phase increased sharply, while the formed passivation film became poor and poor in compactness and uniformity, so as the corrosion resistance of the steel.

Key wordsduplex stainless steel 2304    precipitated phase    aging treatment    corrosion resistance    sensitive temperature
收稿日期: 2019-07-05     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51371123);高等学校博士学科重点博导基金(2013140211003);山西省自然科学基金(2014011002)
通讯作者: 韩培德     E-mail: hanpeide@126.com
Corresponding author: Peide HAN     E-mail: hanpeide@126.com
作者简介: 武栋才,男,1985年生,硕士生

引用本文:

武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
Dongcai WU, Peide HAN. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 51-56.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.216      或      https://www.jcscp.org/CN/Y2020/V40/I1/51

图1  1050 ℃固溶处理1 h及不同温度时效处理2 h后样品的OM相
图2  SAF2304钢在3.5%NaCl溶液中不同时效温度后试样的极化曲线
图3  700 ℃时效处理不同时间后样品的OM像
图4  SAF2304钢在3.5%NaCl溶液中700 ℃时效不同时间后试样的极化曲线
图5  SAF2304钢在700 ℃时效不同时间后的阻抗谱图
图6  SAF2304钢在700 ℃时效不同时间后的阻抗谱等效电路
[1] Oredsson J, Bernhardsson S. Performance of high alloy austenitic and duplex stainless steels in sour gas and oil environments [J]. Mater. Perform., 1983, 22: 35
[2] Sun W S. Progress in duplex stainless steel and its application in industry [J]. Ord. Mater. Sci. Eng., 2001, 24(4): 49
[2] (孙文山. 双相不锈钢的进展及其在工业中的应用 [J]. 兵器材料科学与工程, 2001, 24(4): 49)
[3] Gao W, Luo J M, Yang J J. Research progress and application of double phase stainless steel [J]. Ord. Mater. Sci. Eng., 2005, 28(3): 61
[3] (高娃, 罗建民, 杨建君. 双相不锈钢的研究进展及其应用 [J]. 兵器材料科学与工程, 2005, 28(3): 61)
[4] Yao L. The effect and action mechanism of A1 element on microstructure and properties of 17-7PH、2205 stainless steel [D]. Lanzhou: Lanzhou University of Technology, 2013
[4] (姚亮. A1元素对17-7PH、2205不锈钢组织、性能的影响及作用机制 [D]. 兰州: 兰州理工大学, 2013)
[5] Alvarez-Armas I. Duplex stainless steels: Brief history and some recent alloys [J]. Recent Pat. Mech. Eng., 2008, 1: 51
[6] Bin Y H, Li P F, Li Z Z, et al. Precipitation behaviour of σ-phase and its effects on impact toughness of duplex stainless steel [J]. Hot Work. Technol., 2013, 42(8): 155
[6] (宾远红, 李培芬, 李志铮等. 双相不锈钢σ相析出行为及对冲击性能的影响 [J]. 热加工工艺, 2013, 42(8): 155)
[7] Wang Y S, Li H F, Wang J, et al. Effects of Aging on σ-phase precipitation of 2205 duplex stainless steel [J]. Hot Work. Technol., 2011, 40(8): 172
[7] (王院生, 李海丰, 王均等. 时效对2205双相不锈钢σ析出相的影响 [J]. 热加工工艺, 2011, 40(8): 172)
[8] Jiang Y M, Sun T, Li J, et al. Evaluation of pitting behavior on solution treated duplex stainless steel UNS S31803 [J]. J. Mater. Sci. Technol., 2014, 30: 179
[9] Jeon S H, Kim H J, Park Y S. Effects of inclusions on the precipitation of chi phases and intergranular corrosion resistance of hyper duplex stainless steel [J]. Corros. Sci., 2014, 87: 1
[10] Miao L D, Zhang Y, Wang G D, et al. Qualitative and quantitative analysis of precipitate phases for 750 ℃ aged 2205 duplex stainless steel [J]. Metall. Analy., 2010, 30(9): 6
[10] (缪乐德, 张毅, 王国栋等. 对750 ℃不同热处理时间2205双相不锈钢析出相的定性定量分析 [J]. 冶金分析, 2010, 30(9): 6)
[11] Liu J, Li R, Fan G W, et al. Pitting corrosion behavior of simulated heat affected zone in SAF2507 super duplex stainless steel [J]. Trans. Mater. Heat Treat., 2015, 36(10): 77
[11] (刘洁, 李睿, 范光伟等. 超级双相不锈钢SAF2507焊接热模拟组织的耐点蚀性 [J]. 材料热处理学报, 2015, 36(10): 77)
[12] Liu X, Ma L F, Li Y G. Effect of La and Ce on corrosion resistance of duplex stainless steel [J]. Trans. Mater. Heat Treat., 2016, 37(1): 112
[12] (刘晓, 马利飞, 李运刚. 稀土镧和铈对双相不锈钢耐腐蚀性能的影响 [J]. 材料热处理学报, 2016, 37(1): 112)
[13] Luo S J, Zheng X X. Effects of sensitizing treatment on microstructure and mechanical properties of 2205 duplex stainless steel [J]. J. Mater. Eng., 2011, 39(5): 76
[13] (雒设计, 郑新侠. 敏化处理对2205双相不锈钢组织与力学性能的影响 [J]. 材料工程, 2011, 39(5): 76)
[14] Evangelista E, McQueen H J, Niewczas M, et al. Hot workability of 2304 and 2205 duplex stainless steels [J]. Can. Metall. Quart., 2004, 43: 339
[15] Straffelini G, Baldo S, Calliari I, et al. Effect of aging on the fracture behavior of lean duplex stainless steel [J]. Metall. Mater. Trans., 2009, 40A: 2616
[16] Zhang Z Y, Han D, Jiang Y M, et al. Microstructural evolution and pitting resistance of annealed lean duplex stainless steel UNS S32304 [J]. Nucl. Eng. Des., 2012, 243: 56
[17] Li Z, Xu J L, Li X Y, et al. Preparation of manganese dioxide for electrodes of supercapacitors based on duplex stainless steel [J]. Acta Phys. -Chim. Sin., 2011, 27: 1424
[17] (李钊, 徐菊良, 李旭晏等. 基于双相不锈钢制备超级电容器电极材料MnO2 [J]. 物理化学学报, 2011, 27: 1424)
[18] Wang C Q, Ding Y, Ma L Q, et al. Corrosion resisting action of 304 and 2304 stainless steel in chloride medium [J]. Pressure Vessel Technol., 2007, 24(5): 1
[18] (王常青, 丁毅, 马立群等. 304和2304不锈钢在Cl介质中的耐蚀行为 [J]. 压力容器, 2007, 24(5): 1)
[19] Li X L, Cai Q W, Zhao Y T, et al. Effect of Ti and Ti-V microalloyed on precipitation behaviors, microstructure and properties of low carbon bainitic steel [J]. J. Mater. Eng., 2015, 43(6): 52
[19] (李晓林, 蔡庆伍, 赵运堂等. Ti和Ti-V微合金化低碳贝氏体钢组织性能及析出行为的研究 [J]. 材料工程, 2015, 43(6): 52)
[20] Wu J, Zhang H H. Formation and growth rules of participate in niobium micro-alloyed steel [J]. Heat Treat. Met., 2011, 36(4): 4
[20] (吴静, 张恒华. 铌微合金钢析出相的形成与长大规律 [J]. 金属热处理, 2011, 36(4): 4)
[21] Han D, Jiang Y M, Deng B, et al. Effect of aging time on electrochemical corrosion behavior of 2101 duplex stainless steel [J]. Acta Metall. Sin., 2009, 45: 919
[21] (韩冬, 蒋益明, 邓博等. 时效时间对2101双相不锈钢电化学腐蚀行为的影响 [J]. 金属学报, 2009, 45: 919)
[22] Fang Y L, Liu Z Y, Wang G D. Effect of isothermal aging on precipitation behavior of lean duplex stainless steel 2101 [J]. J. Iron Steel Res., 2010, 22(6): 21
[22] (方轶琉, 刘振宇, 王国栋. 等温时效对节约型双相不锈钢2101析出行为的影响 [J]. 钢铁研究学报, 2010, 22(6): 21)
[23] Liou H Y, Hsieh R I, Tsai W T. Microstructure and pitting corrosion in simulated heat-affected zones of duplex stainless steels [J]. Mater. Chem. Phys., 2002, 74: 33
[24] Ramirez A J, Lippold J C, Brandi S D. The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels [J]. Metall. Mater. Trans., 2003, 34A: 1575
[25] Bhattacharya A, Singh P M. Role of microstructure on the corrosion susceptibility of UNS S32101 duplex stainless steel [J]. Corrosion, 2008, 64: 532
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[9] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[10] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[11] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[12] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[13] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[14] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[15] 崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.